skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Investigating the Biotic and Abiotic Drivers of Body Size Disparity in Communities of Non‐Volant Terrestrial Mammals
ABSTRACT AimThe species that compose local communities possess unique sets of functional and ecological traits that can be used as indicators of biotic and abiotic variation across space and time. Body size is a particularly relevant trait because species with different body sizes typically have different life history strategies and occupy distinct niches. Here we used the body sizes of non‐volant (i.e., non‐flying) terrestrial mammals to quantify and compare the body size disparity of mammal communities across the globe. LocationGlobal. Time PeriodPresent. Major Taxa StudiedNon‐volant terrestrial mammals. MethodsWe used IUCN range maps of 3982 terrestrial mammals to identify 1876 communities. We then combined diet data with data on climate, elevation and anthropogenic pressures to evaluate these variables' relative importance on the observed body size dispersion of these communities and its deviation from a null model. ResultsDispersion for these communities is significantly greater than expected in 54% of communities and significantly less than expected in 30% of communities. The number of very large species, continent, range sizes, diet disparity and annual temperature collectively explain > 50% of the variation in observed dispersion, whereas continent, the number of very large species, and precipitation collectively explain > 30% of the deviation from the null model. Main ConclusionsClimate and elevation have minimal predictive power, suggesting that biotic factors may be more important for explaining community body size distributions. However, continent is consistently a strong predictor of dispersion, likely due to it capturing the combined effects of climate, size‐selective human‐induced extinctions and more. Overall, our results are consistent with several plausible explanations, including, but not limited to, competitive exclusion, unequal distribution of resources, within‐community environmental heterogeneity, habitat filtering and ecosystem engineering. Further work focusing on other confounding variables, at finer spatial scales and/or within more causal frameworks is required to better understand the driver(s) of these patterns.  more » « less
Award ID(s):
2344776 1744223 1555535 2344777 2051255
PAR ID:
10596857
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
33
Issue:
12
ISSN:
1466-822X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Suen, Garret (Ed.)
    ABSTRACT The gut microbiome is a symbiotic microbial community associated with the host and plays multiple important roles in host physiology, nutrition, and health. A number of factors have been shown to influence the gut microbiome, among which diet is considered to be one of the most important; however, the relationship between diet composition and gut microbiota in wild mammals is still not well recognized. Herein, we characterized the gut microbiota of bats and examined the effects of diet, host taxa, body size, gender, elevation, and latitude on the gut microbiota. The cytochrome C oxidase subunit I (COI) gene and 16S rRNA gene amplicons were sequenced from the feces of eight insectivorous bat species in southern China, includingMiniopterus fuliginosus,Aselliscus stoliczkanus,Myotis laniger,Rhinolophus episcopus,Rhinolophus osgoodi,Rhinolophus ferrumequinum,Rhinolophus affinis,andRhinolophus pusillus. The results showed that the composition of gut microbiome and diet exhibited significant differences among bat species. Diet composition and gut microbiota were significantly correlated at the order, family, genus, and operational taxonomic unit levels, while certain insects had a marked effect on the gut microbiome at specific taxonomic levels. In addition, elevation, latitude, body weight of bats, and host species had significant effects on the gut microbiome, but phylosymbiosis between host phylogeny and gut microbiome was lacking. These findings clarify the relationship between gut microbiome and diet and contribute to improving our understanding of host ecology and the evolution of the gut microbiome in wild mammals. IMPORTANCEThe gut microbiome is critical for the adaptation of wildlife to the dynamic environment. Bats are the second-largest group of mammals with short intestinal tract, yet their gut microbiome is still poorly studied. Herein, we explored the relationships between gut microbiome and food composition, host taxa, body size, gender, elevation, and latitude. We found a significant association between diet composition and gut microbiome in insectivorous bats, with certain insect species having major impacts on gut microbiome. Factors like species taxa, body weight, elevation, and latitude also affected the gut microbiome, but we failed to detect phylosymbiosis between the host phylogeny and the gut microbiome. Overall, our study presents novel insights into how multiple factors shape the bat’s gut microbiome together and provides a study case on host-microbe interactions in wildlife. 
    more » « less
  2. Abstract AimTropical regions harbour over half of the world's mammals and birds, but how their communities have assembled over evolutionary timescales remains unclear. To compare eco‐evolutionary assembly processes between tropical mammals and birds, we tested how hypotheses concerning niche conservatism, environmental stability, environmental heterogeneity and time‐for‐speciation relate to tropical vertebrate community phylogenetic and functional structure. LocationTropical rainforests worldwide. Time periodPresent. Major taxa studiedGround‐dwelling and ground‐visiting mammals and birds. MethodsWe used in situ observations of species identified from systematic camera trap sampling as realized communities from 15 protected tropical rainforests in four tropical regions worldwide. We quantified standardized phylogenetic and functional structure for each community and estimated the multi‐trait phylogenetic signal (PS) in ecological strategies for the four regional species pools of mammals and birds. Using linear regression models, we test three non‐mutually exclusive hypotheses by comparing the relative importance of colonization time, palaeo‐environmental changes in temperature and land cover since 3.3 Mya, contemporary seasonality in temperature and productivity and environmental heterogeneity for predicting community phylogenetic and functional structure. ResultsPhylogenetic and functional structure showed non‐significant yet varying tendencies towards clustering or dispersion in all communities. Mammals had stronger multi‐trait PS in ecological strategies than birds (mean PS: mammal = 0.62, bird = 0.43). Distinct dominant processes were identified for mammal and bird communities. For mammals, colonization time and elevation range significantly predicted phylogenetic clustering and functional dispersion tendencies respectively. For birds, elevation range and contemporary temperature seasonality significantly predicted phylogenetic and functional clustering tendencies, respectively, while habitat diversity significantly predicted functional dispersion tendencies. Main conclusionsOur results reveal different eco‐evolutionary assembly processes structuring contemporary tropical mammal and bird communities over evolutionary timescales that have shaped tropical diversity. Our study identified marked differences among taxonomic groups in the relative importance of historical colonization and sensitivity to environmental change. 
    more » « less
  3. ABSTRACT Powered flight has evolved several times in vertebrates and constrains morphology and physiology in ways that likely have shaped how organisms cope with infections. Some of these constraints probably have impacts on aspects of immunology, such that larger fliers might prioritize risk reduction and safety. Addressing how the evolution of flight may have driven relationships between body size and immunity could be particularly informative for understanding the propensity of some taxa to harbor many virulent and sometimes zoonotic pathogens without showing clinical disease. Here, we used a comparative framework to quantify scaling relationships between body mass and the proportions of two types of white blood cells – lymphocytes and granulocytes (neutrophils/heterophils) – across 63 bat species, 400 bird species and 251 non-volant mammal species. By using phylogenetically informed statistical models on field-collected data from wild Neotropical bats and from captive bats, non-volant mammals and birds, we show that lymphocyte and neutrophil proportions do not vary systematically with body mass among bats. In contrast, larger birds and non-volant mammals have disproportionately higher granulocyte proportions than expected for their body size. Our inability to distinguish bat lymphocyte scaling from birds and bat granulocyte scaling from all other taxa suggests there may be other ecological explanations (i.e. not flight related) for the cell proportion scaling patterns. Future comparative studies of wild bats, birds and non-volant mammals of similar body mass should aim to further differentiate evolutionary effects and other aspects of life history on immune defense and its role in the tolerance of (zoonotic) infections. 
    more » « less
  4. Muñoz, Martha (Ed.)
    Abstract Selective pressures favor morphologies that are adapted to distinct ecologies, resulting in trait partitioning among ecomorphotypes. However, the effects of these selective pressures vary across taxa, especially because morphology is also influenced by factors such as phylogeny, body size, and functional trade-offs. In this study, we examine how these factors impact functional diversification in mammals. It has been proposed that trait partitioning among mammalian ecomorphotypes is less pronounced at small body sizes due to biomechanical, energetic, and environmental factors that favor a “generalist” body plan, whereas larger taxa exhibit more substantial functional adaptations. We title this the Divergence Hypothesis (DH) because it predicts greater morphological divergence among ecomorphotypes at larger body sizes. We test DH by using phylogenetic comparative methods to examine the postcranial skeletons of 129 species of taxonomically diverse, small-to-medium-sized (<15 kg) mammals, which we categorize as either “tree-dwellers” or “ground-dwellers.” In some analyses, the morphologies of ground-dwellers and tree-dwellers suggest greater between-group differentiation at larger sizes, providing some evidence for DH. However, this trend is neither particularly strong nor supported by all analyses. Instead, a more pronounced pattern emerges that is distinct from the predictions of DH: within-group phenotypic disparity increases with body size in both ground-dwellers and tree-dwellers, driven by morphological outliers among “medium”-sized mammals. Thus, evolutionary increases in body size are more closely linked to increases in within-locomotor-group disparity than to increases in between-group disparity. We discuss biomechanical and ecological factors that may drive these evolutionary patterns, and we emphasize the significant evolutionary influences of ecology and body size on phenotypic diversity. 
    more » « less
  5. Climate change‐induced range shifts can disrupt interactions among species by moving them in and out of ecological communities. These disruptions can include impacts on competition for shared resources. Bumble bees (Bombusspp.) are important pollinators shifting their range upwards in elevation in response to climate change. These shifts could lead to altered competition among species and threaten co‐existence. This could be particularly worrying at the tops of mountain ranges where bumble bees may no longer be able to move up to higher elevations to track climate change. To better understand this issue, we investigated changes in diet niche overlap among bumble bee species along a 2296 m elevation gradient in the southern Rocky Mountains. Additionally, we investigated how morphological and phenological traits impact diet composition (flower species visited) among bumble bee species and explored a simple simulation to understand how the continued upward movement of bumble bee species under climate change into the mountaintop may affect trait overlap of newly co‐occurring species. We found that diet niche overlap among bumble bee species increased with elevation. We also found that differences in morphological and phenological traits (body size, tongue length, date of activity) were correlated with differences in diet composition among bumble bee species. Finally, we described how the co‐occurrence of bumble bee species from lower elevations with mountaintop species would lead to increased trait overlap and likely more species sharing similar flowers. These shifts could lead to increased competition for high‐elevation restricted species on mountaintops and exacerbate the effects of climate change on high‐elevation bumble bees. 
    more » « less