We sampled the respiratory mucus from voluntary blowhole exhalations (“blow”) of three healthy beluga whales (Delphinapterus leucas) under professional human care. Blow samples were collected from three resident belugas, one adult male (M1) and two adult females (F1, F2), with voluntary behaviors via non-invasive methods over three days in July 2021 (four days for M1). Samples were weighed and examined microscopically for the enumeration of eukaryotic and prokaryotic microbes, and then were used to evaluate carbon substrate use and taxonomic diversity of prokaryotic communities in the host respiratory sytem. Microscopical observations and 18S rRNA gene sequencing indicated the presence of eukaryotic microbiota, the ciliate generaPlanilaminaandKyaroikeusin all three individuals. Exposure of samples to different metabolic carbon substrates indicated significant differences in the number of carbon sources usable by the prokaryotic communities of different whales (range: 11-25 sources), as well as a signficantly decreased diversity of carbon sources used by the community in the habitat water (5 sources). Sequencing of the hypervariable V4 region of the 16S rRNA gene revealed 19 amplicon sequence variants (ASVs) that were present in all whale samples. The oldest femaleD. leucas(F2) had the lowest overall diversity, and was significantly different from M1 and F1 in taxon composition, including an anomalously low ratio of Baccillota: Bacteroidota (0.01) compared to the other whales. In comparisons of microbial community composition, M1 had a significantly higher diversity than F1 and F2. These results suggest that attention should be given to regular microbiome sampling, and indicate a need for the pairing of microbiome and clinical data for animals in aquaria. Overall, these data contribute to the growing database on the core respiratory microbiota in cohabiting cetaceans under professional human care, indicate the utility of non-invasive sampling, and help characterize a baseline for healthyD. leucas.
more »
« less
This content will become publicly available on November 22, 2025
Microbial Metagenomes Across a Complete Phytoplankton Bloom Cycle: High-Resolution Sampling Every 4 Hours Over 22 Days
In May and June of 2021, marine microbial samples were collected for DNA sequencing in East Sound, WA, USA every 4 hours for 22 days. This high temporal resolution sampling effort captured the last 3 days of aRhizosoleniasp. bloom, the initiation and complete bloom cycle ofChaetoceros socialis(8 days), and the following bacterial bloom (2 days). Metagenomes were completed on the time series, and the dataset includes 128 size-fractionated microbial samples (0.22–1.2 µm), providing gene abundances for the dominant members of bacteria, archaea, and viruses. This dataset also has time-matched nutrient analyses, flow cytometry data, and physical parameters of the environment at a single point of sampling within a coastal ecosystem that experiences regular bloom events, facilitating a range of modeling efforts that can be leveraged to understand microbial community structure and their influences on the growth, maintenance, and senescence of phytoplankton blooms.
more »
« less
- PAR ID:
- 10597001
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Scientific Data
- Date Published:
- Journal Name:
- Scientific Data
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2052-4463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Li, Delei (Ed.)Decreased sea ice cover in the northern Bering Sea has altered annual phytoplankton phenology owing to an expansion of open water duration and its impact on ocean stratification. Limitations of satellite remote sensing such as the inability to detect bloom activity throughout the water column, under ice, and in cloudy conditions dictate the need for shipboard based measurements to provide more information on bloom dynamics. In this study, we adapted remote sensing land cover classification techniques to provide a new means to determine bloom stage from shipboard samples. Specifically, we used multiyear satellite time series of chlorophyll a to determine whether in-situ blooms were actively growing or mature (i.e., past-peak) at the time of field sampling. Field observations of chlorophyll a and pheophytin (degraded and oxidized chlorophyll products) were used to calculate pheophytin proportions, i.e., (Pheophytin/(Chlorophyll a + Pheophytin)) and empirically determine whether the bloom was growing or mature based on remotely sensed bloom stages. Data collected at 13 north Bering Sea stations each July from 2013–2019 supported a pheophytin proportion of 28% as the best empirical threshold to distinguish a growing vs. mature bloom stage. One outcome was that low vs. high sea ice years resulted in significantly different pheophytin proportions in July; in years with low winter-to-spring ice, more blooms with growing status were observed, compared to later stage, more mature blooms following springs with abundant seasonal sea ice. The detection of growing blooms in July following low ice years suggests that changes in the timing of the spring bloom triggers cascading effects on mid-summer production.more » « less
-
Kumar, Bimlesh (Ed.)Various spatiotemporal, hydraulic, and water quality parameters can affect the microbial community composition of water within drinking water distribution systems (DWDSs). Although some relationships between various paravmeters and microbial growth are known, the effects of spatial and temporal trends on particle-associated microbial communities in chlorinated DWDSs remain poorly understood. The objectives of this study were to characterize the microbial community composition of both particle-associated bacteria (PAB) and total bacteria (TB) within a full-scale chlorinated DWDS, and assess relationships between microbiavvl community and various spatiotemporal, hydraulic, and water quality parameters. Bulk water samples were collected from the treatment plant, a storage tank, and 12 other sites in a rural chlorinated DWDS at varying distances from the treatment plant on four sampling dates spanning six months. Amplicon sequencing targeting the 16S rRNA gene was performed to characterize the microbial community. Gammaproteobacteria dominated the DWDS, and hydraulic parameters were well-correlated with differences in microbial communities between sites. Results indicate that hydraulic changes may have led to the detachment of biofilms and loose deposits, subsequently affecting the microbial community composition at each site. Spatial variations in microbial community were stronger than temporal variations, differing from similar studies and indicating that the highly varied hydraulic conditions within this system may intensify spatial variations. Genera containing pathogenic species were detected, withLegionellaandPseudomonasdetected at every site at least once andMycobacteriumdetected at most sites. However, only one sample had quantifiablePseudomonas aeruginosathrough quantitative polymerase chain reaction (qPCR), and no samples had quantifiableLegionella pneumophilaorMycobacterium avium, indicating a low human health risk. This study establishes spatial variations in PAB associated with varied hydraulic conditions as an important factor driving microbial community within a chlorinated DWDS.more » « less
-
Summary Interactions between bacteria and phytoplankton in the phycosphere have impacts at the scale of whole ecosystems, including the development of harmful algal blooms. The cyanobacteriumMicrocystiscauses toxic blooms that threaten freshwater ecosystems and human health globally.Microcystisgrows in colonies that harbour dense assemblages of other bacteria, yet the taxonomic composition of these phycosphere communities and the nature of their interactions withMicrocystisare not well characterized. To identify the taxa and compositional variance withinMicrocystisphycosphere communities, we performed 16S rRNA V4 region amplicon sequencing on individualMicrocystiscolonies collected biweekly via high‐throughput droplet encapsulation during a western Lake Erie cyanobacterial bloom. TheMicrocystisphycosphere communities were distinct from microbial communities in whole water and bulk phytoplankton seston in western Lake Erie but lacked ‘core’ taxa found across all colonies. However, dissimilarity in phycosphere community composition correlated with sampling date and theMicrocystis16S rRNA oligotype. Several taxa in the phycosphere were specific to and conserved withMicrocystisof a single oligotype or sampling date. Together, this suggests that physiological differences betweenMicrocystisstrains, temporal changes in strain phenotypes, and the composition of seeding communities may impact community composition of theMicrocystisphycosphere.more » « less
-
An isotopic labeling experiment was conducted in an Arctic coastal wet tundra ecosystem to determine how quickly acetate is transformed into methane and transported from the soil to the atmosphere. Carbon-13 (13C) labelled acetate was injected into soil chambers installed across a 131 meter (m) transect. Gas samples were periodically collected from the headspace in chambers, and analyzed for methane concentration and enrichment in 13C. Methane flux was roughly estimated from the final concentration in the chambers accumulated over a one-hour sampling period. This dataset includes methane fluxes, concentrations and 13C enrichment values from this experiment. In addition, water samples were collected from 15 centimeters (cm) depth after the final time point for measurements of residual dissolved 13C-methane in the soil after 9 days.more » « less
An official website of the United States government
