skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Zelinski Lab: Cynomolgus Macaque Ovary
Dataset for histology images from the ovaries of Cynomolgus macaque (Macaca fascicularis). These images are associated with the Multispecies Ovary Tissue Histology Electronic Repository (MOTHER), an online repository (https://mother-db.org) of ovary tissue histology digital images, funded by NSF (DBI-2054061). Sharing these histology images will facilitate comparative studies of female reproductive strategies, enable the development of computational models to test hypotheses related to ovarian development and female reproduction, and serve as an educational resource, thereby reducing the use of animals in research.</p> See the README file (https://dataverse.asu.edu/file.xhtml?fileId=27428) for an overview of the dataset, including naming conventions.  more » « less
Award ID(s):
2054061
PAR ID:
10597016
Author(s) / Creator(s):
Editor(s):
Zelinski, Mary B; Dietrich, Suzanne W; Sluka, James P; Watanabe, Karen H
Publisher / Repository:
ASU Library Research Data Repository
Date Published:
Subject(s) / Keyword(s):
Medicine, Health and Life Sciences ovary female reproductive system histology Macaca fascicularis (Cynomolgus macaque) female reproductive system ovarian follicle ovarian follicle development follicular phase luteal phase luteal cell ovulation oocyte granulosa cell theca cell corpus luteum menstrual cycle
Format(s):
Medium: X Size: 344832998; 390628372; 444757892; 420244911; 404115853; 351269951; 491723573; 480435407; 551827046; 501438637; 458802727; 474401590; 370285695; 383633347; 468416127; 361943458; 380780965; 394580821; 385187847; 487886893; 311552126; 279940804; 494605265; 272511438; 303145532; 342629903; 299755132; 157717250; 142130986; 191011673; 189929138; 152603290; 132443109; 116307368; 106191237; 104726572; 125022664; 69078988; 75156909; 76147824; 86764845; 393973223; 441229222; 445816910; 391318407; 436085644; 357017663; 374300439; 466290726; 438364972; 376105390; 5511224; 52730; 685586; 78752; 3836774; 139040; 198920; 3922616; 749951; 4649636; 151646; 178400; 2784977; 3611414; 1055135; 3419132; 122690; 191546; 151808; 4803383; 3840752; 1163444; 37631; 3687146; 1571432; 33053; 188552; 65774; 4354400; 123728; 3433283; 194546; 59042; 55766; 1904258; 3798992; 155546; 4020113; 158729; 4578671; 2725196; 170021; 200192; 144818; 4872251; 4196072; 4431164; 63668; 202208; 111656; 4671920; 4406552; 3910844; 762563; 4929056; 176486; 30314; 4991456; 189152; 3029264; 154706; 113744; 1250918; 33380; 163136; 1319084; 3494666; 2994086; 180956; 1041392; 1411157; 139754; 78626; 1525628; 3742904; 127226; 44318; 159788; 863246; 4382762; 4901816; 159932; 186311; 3116126; 44909; 3732098; 197882; 49337; 150281; 177464; 142589; 4452104; 3557849; 147356; 3905894; 155855; 3926267; 179696; 158504; 222800; 4739654; 1896188; 8801; 8803; 9010; 8803; 8803; 8801; 8803; 8803; 8801; 8803; 8803; 8803; 8803; 8803; 8803; 8801; 8801; 8803; 9010; 8803; 8803; 8803; 8801; 8803; 8803; 8803; 9096; 9099; 8801; 8803; 9098; 8801; 8803; 8803; 8803; 8803; 9009; 8803; 9012; 8803; 8803; 8803; 6150; 8804; 8804; 8804; 8804; 8804; 8804; 8804; 8804; 8804 Other: image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; image/tiff; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/html; text/plain; text/xml; text/xml; text/xml; text/xml; text/xml; text/xml; text/xml; text/xml; text/xml
Size(s):
344832998 390628372 444757892 420244911 404115853 351269951 491723573 480435407 551827046 501438637 458802727 474401590 370285695 383633347 468416127 361943458 380780965 394580821 385187847 487886893 311552126 279940804 494605265 272511438 303145532 342629903 299755132 157717250 142130986 191011673 189929138 152603290 132443109 116307368 106191237 104726572 125022664 69078988 75156909 76147824 86764845 393973223 441229222 445816910 391318407 436085644 357017663 374300439 466290726 438364972 376105390 5511224 52730 685586 78752 3836774 139040 198920 3922616 749951 4649636 151646 178400 2784977 3611414 1055135 3419132 122690 191546 151808 4803383 3840752 1163444 37631 3687146 1571432 33053 188552 65774 4354400 123728 3433283 194546 59042 55766 1904258 3798992 155546 4020113 158729 4578671 2725196 170021 200192 144818 4872251 4196072 4431164 63668 202208 111656 4671920 4406552 3910844 762563 4929056 176486 30314 4991456 189152 3029264 154706 113744 1250918 33380 163136 1319084 3494666 2994086 180956 1041392 1411157 139754 78626 1525628 3742904 127226 44318 159788 863246 4382762 4901816 159932 186311 3116126 44909 3732098 197882 49337 150281 177464 142589 4452104 3557849 147356 3905894 155855 3926267 179696 158504 222800 4739654 1896188 8801 8803 9010 8803 8803 8801 8803 8803 8801 8803 8803 8803 8803 8803 8803 8801 8801 8803 9010 8803 8803 8803 8801 8803 8803 8803 9096 9099 8801 8803 9098 8801 8803 8803 8803 8803 9009 8803 9012 8803 8803 8803 6150 8804 8804 8804 8804 8804 8804 8804 8804 8804
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Dietrich, Suzanne W; Zelinski, Mary B; Sluka, James P; Watanabe, Karen H (Ed.)
    Dataset for histology images from the ovaries of Japanese macaque (Macaca fuscata). These images are associated with the Multispecies Ovary Tissue Histology Electronic Repository (MOTHER), an online repository (https://mother-db.org) of ovary tissue histology digital images funded by NSF (DBI-2054061). Sharing these histology images will facilitate comparative studies of female reproductive strategies, enable the development of computational models to test hypotheses related to ovarian development and female reproduction, and serve as an educational resource thereby reducing the use of animals in research. See the README file (https://dataverse.asu.edu/file.xhtml?fileId=10645) for an overview of the dataset, including file naming conventions. 
    more » « less
  2. Dietrich, Suzanne W; Zelinksi, Mary B; Sluka, James P; Watanabe, Karen H (Ed.)
    Dataset for histology images from the ovaries of Rhesus macaque (Macaca mulatta). These images are associated with the Multispecies Ovary Tissue Histology Electronic Repository (MOTHER), an online repository (https://mother-db.org) of ovary tissue histology digital images, funded by NSF (DBI-2054061). Sharing these histology images will facilitate comparative studies of female reproductive strategies, enable the development of computational models to test hypotheses related to ovarian development and female reproduction, and serve as an educational resource thereby reducing the use of animals in research. See the README file (https://dataverse.asu.edu/file.xhtml?fileId=32181) for an overview of the dataset, including naming conventions. 
    more » « less
  3. Abstract The Multispecies Ovary Tissue Histology Electronic Repository (MOTHER) is a publicly accessible repository of ovary histology images. MOTHER includes hundreds of images from nonhuman primates, as well as ovary histology images from an expanding range of other species. Along with an image, MOTHER provides metadata about the image, and for selected species, follicle identification annotations. Ongoing work includes assisting scientists with contributing their histology images, creation of manual and automated (via machine learning) processing pipelines to identify and count ovarian follicles in different stages of development, and the incorporation of that data into the MOTHER database (MOTHER-DB). MOTHER will be a critical data repository storing and disseminating high-value histology images that are essential for research into ovarian function, fertility, and intra-species variability. 
    more » « less
  4. The goal of the Multispecies Ovary Tissue Histology Electronic Repository (MOTHER) project is to establish a collection of nonhuman ovary histology images for multiple species as a resource for researchers and educators. An important component of sharing scientific data is the inclusion of the contextual metadata that describes the data. MOTHER extends the Ecological Metadata Language (EML) for documenting research data, leveraging its data provenance and usage license with the inclusion of metadata for ovary histology images. The design of the MOTHER metadata includes information on the donor animal, including reproductive cycle status, the slide and its preparation. MOTHER also extends the ezEML tool, called ezEML+MOTHER, for the specification of the metadata. The design of the MOTHER database (MOTHER-DB) captures the metadata about the histology images, providing a searchable resource for discovering relevant images. MOTHER also defines a curation process for the ingestion of a collection of images and its metadata, verifying the validity of the metadata before its inclusion in the MOTHER collection. A Web search provides the ability to identify relevant images based on various characteristics in the metadata itself, such as genus and species, using filters. 
    more » « less
  5. Abstract: Thin tissue slice based histology has been used as a gold standard for disease diagnosis since over a hundred years ago. However, histopathological evaluation on two-dimensional slides suffers from large variations due to limited sampling. To improve the diagnostic accuracy, three-dimensional (3D) histology is performed through serial sectioning, staining, imaging and reconstruction of individual slices, which is highly time-consuming and labor intensive. We developed a volumetric stimulated Raman scattering (SRS) imaging method, which provides histology-like information in 3D context without the need for staining with dyes. Using a small molecule clearing agent, formamide, we performed tissue clearing within 30 min and achieved an imaging depth up to 500 µm in highly scattered tissues, including brain, kidney, liver and lung. Through a two-color SRS imaging scheme, we obtained histology-like images in cleared brain tissue slices. Our method has the potential for 3D tissue histopathology to improve the accuracy of histopathological examination. https://doi.org/10.1364/BOE.10.004329 
    more » « less