skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 4, 2026

Title: Mettl15-Mettl17 modulates the transition from early to late pre-mitoribosome
ABSTRACT The assembly of the mitoribosomal small subunit involves folding and modification of rRNA, and its association with mitoribosomal proteins. This process is assisted by a dynamic network of assembly factors. Conserved methyltransferases Mettl15 and Mettl17 act on the solvent-exposed surface of rRNA. Binding of Mettl17 is associated with the early assembly stage, whereas Mettl15 is involved in the late stage, but the mechanism of transition between the two was unclear. Here, we integrate structural data fromTrypanosoma bruceiwith mammalian homologs and molecular dynamics simulations. We reveal how the interplay of Mettl15 and Mettl17 in intermediate steps links the distinct stages of small subunit assembly. The analysis suggests a model wherein Mettl17 acts as a platform for Mettl15 recruitment. Subsequent release of Mettl17 allows a conformational change of Mettl15 for substrate recognition. Upon methylation, Mettl15 adopts a loosely bound state which ultimately leads to its replacement by initiation factors, concluding the assembly. Together, our results indicate that assembly factors Mettl15 and Mettl17 cooperate to regulate the biogenesis process, and present a structural data resource for understanding molecular adaptations of assembly factors in mitoribosome.  more » « less
Award ID(s):
2019745
PAR ID:
10597038
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Both the small and large subunits of the ribosome, the molecular machine that synthesizes proteins, are complexes of ribosomal RNAs (rRNAs) and a number of proteins. In bacteria, the small subunit has a single 16S rRNA whose folding is the first step in its assembly. The central domain of the 16S rRNA folds independently, driven either by Mg2+ions or by interaction with ribosomal proteins. To provide a quantitative description of ion-induced folding of the ∼350-nucleotide rRNA, we carried out extensive coarse-grained molecular simulations spanning Mg2+concentration between 0 and 30 mM. The Mg2+dependence of the radius of gyration shows that globally the rRNA folds cooperatively. Surprisingly, various structural elements order at different Mg2+concentrations, indicative of the heterogeneous assembly even within a single domain of the rRNA. Binding of Mg2+ions is highly specific, with successive ion condensation resulting in nucleation of tertiary structures. We also predict the Mg2+-dependent protection factors, measurable in hydroxyl radical footprinting experiments, which corroborate the specificity of Mg2+-induced folding. The simulations, which agree quantitatively with several experiments on the folding of a three-way junction, show that its folding is preceded by formation of other tertiary contacts in the central junction. Our work provides a starting point in simulating the early events in the assembly of the small subunit of the ribosome. 
    more » « less
  2. Abstract The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNAVal. The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed us to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transitions in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide a description of the structure and function of the human mitoribosome. 
    more » « less
  3. Abstract Spirotrichonymphea, one of the six classes of phylum Parabasalia, are characterized by bearing many flagella in spiral rows, and they occur exclusively in the guts of termites. Phylogenetic relationships among the 13 described genera are not well understood due to complex morphological evolution and a paucity of molecular data. One such understudied genus isSpironympha. It has been variously considered a valid genus, a subgenus ofSpirotrichonympha, or an “immature” life cycle stage ofSpirotrichonympha. To clarify this, we sequenced the small subunit rRNA gene sequences ofSpironymphaandSpirotrichonymphacells isolated from the hindguts ofReticulitermesspecies andHodotermopsis sjostedtiand confirmed the molecular identity ofH. sjostedtisymbionts using fluorescence in situ hybridization.Spironymphaas currently circumscribed is polyphyletic, with bothH. sjostedtisymbiont species branching separately from the “true”SpironymphafromReticulitermes. Similarly, theSpirotrichonymphasymbiont ofH. sjostedtibranches separately from the “true”Spirotrichonymphafound inReticulitermes. Our data supportSpironymphafromReticulitermesas a valid genus most closely related toSpirotrichonympha, though its monophyly and interspecific relationships are not resolved in our molecular phylogenetic analysis. We propose three new genera to accommodate theH. sjostedtisymbionts and two new species ofSpirotrichonymphafromReticulitermes. 
    more » « less
  4. Abstract Biological soil crusts represent a rich habitat for diverse and complex eukaryotic microbial communities. A unique but extremely common habitat is the urban sidewalk and its cracks that collect detritus. While these habitats are ubiquitous across the globe, little to no work has been conducted to characterize protists found there. Amoeboid protists are major predators of bacteria and other microbial eukaryotes in these microhabitats and therefore play a substantial ecological role. From sidewalk crack soil crusts, we have isolated three naked amoebae with finely tapered subpseudopodia, and a simple life cycle consisting of a trophic amoeba and a cyst stage. Using a holistic approach including light, electron, and fluorescence microscopy as well as phylogenetics using the ribosomal small subunit rRNA gene and phylogenomics using 230 nuclear genes, we find that these amoeboid organisms fail to match any previously described eukaryote genus. However, we determined the amoebae belong to the amoebozoan lineage Variosea based on phylogenetics. The molecular analyses place our isolates in two novel genera forming a grade at the base of the variosean group Protosteliida. These three novel varioseans among two novel genera and species are herein named “Kanabo kenzan” and “Parakanabo toge.” 
    more » « less
  5. Abstract Despite ferritin's critical role in regulating cellular and systemic iron levels, our understanding of the structure and assembly mechanism of isoferritins, discovered over eight decades ago, remains limited. Unveiling how the composition and molecular architecture of hetero‐oligomeric ferritins confer distinct functionality to isoferritins is essential to understanding how the structural intricacies of H and L subunits influence their interactions with cellular machinery. In this study, ferritin heteropolymers with specific H to L subunit ratios were synthesized using a uniquely engineered plasmid design, followed by high‐resolution cryo‐electron microscopy analysis and deep learning‐based amino acid modeling. Our structural examination revealed unique architectural features during the self‐assembly mechanism of heteropolymer ferritins and demonstrated a significant preference for H‐L heterodimer formation over H‐H or L‐L homodimers. Unexpectedly, while dimers seem essential building blocks in the protein self‐assembly process, the overall mechanism of ferritin self‐assembly is observed to proceed randomly through diverse pathways. The physiological significance of these findings is discussed including how ferritin microheterogeneity could represent a tissue‐specific adaptation process that imparts distinctive tissue‐specific functions to isoferritins. 
    more » « less