ABSTRACT Herbicide resistance in agricultural weeds has become one of the greatest challenges for sustainable crop production. The repeated evolution of herbicide resistance provides an excellent opportunity to study the genetic and physiological basis of the resistance phenotype and the evolutionary responses to human‐mediated selection pressures.Lolium multiflorumis a ubiquitous weed that has evolved herbicide resistance repeatedly around the world in various cropping systems. We assembled and annotated a chromosome‐scale genome forL. multiflorumand elucidated the genetic architecture of paraquat resistance by performing quantitative trait locus analysis, genome‐wide association studies, genetic divergence analysis and transcriptome analyses from paraquat‐resistant and ‐susceptibleL. multiflorumplants. We identified two regions on chromosome 5 that were associated with paraquat resistance. These regions both showed evidence for positive selection among the resistant populations we sampled, but the effects of this selection on the genome differed, implying a complex evolutionary history. In addition, these regions contained candidate genes that encoded cellular transport functions, including a novel multidrug and toxin extrusion (MATE) protein and a cation transporter previously shown to interact with polyamines. Given thatL. multiflorumis a weed and a cultivated crop species, the genomic resources generated will prove valuable to a wide spectrum of the plant science community. Our work contributes to a growing body of knowledge on the underlying evolutionary and ecological dynamics of rapid adaptation to strong anthropogenic selection pressure that could help initiate efforts to improve weed management practices in the long term for a more sustainable agriculture. 
                        more » 
                        « less   
                    This content will become publicly available on February 1, 2026
                            
                            Novel Regulators and Their Epistatic Networks in Arabidopsis ' Defence Responses to Alternaria alternata Infection
                        
                    
    
            ABSTRACT Necrotrophic pathogens cause serious threats to agricultural crops, and understanding the resistance genes and their genetic networks is key to breeding new plant cultivars with better resistance traits. AlthoughAlternaria alternatacauses black spot in important leafy brassica vegetables, and leads to significant loss of yield and food quality, little is known about plant–A. alternatainteractions. In this study, we used a unique and large collection of single, double and triple mutant lines of defence metabolite regulators inArabidopsisto explore how these transcription factors and their epistatic networks may influenceA. alternatainfections. This identified nine novel regulators and 20 pairs of epistatic interactions that modulateArabidopsisplants' defence responses toA. alternatainfection. We further showed that the glucosinolate 4‐methoxy‐indol‐3‐ylmethyl is the only glucosinolate consistently responsive toA. alternatainfection in Col‐0 ecotype. With the further exploration of the regulators and the genetic networks on modulating the accumulation of glucosinolates underA. alternatainfection, an inverted triangle regulatory model was proposed forArabidopsisplants' defence responses at a metabolic level and a phenotypic level. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2020754
- PAR ID:
- 10597054
- Publisher / Repository:
- Molecular Plant Pathology
- Date Published:
- Journal Name:
- Molecular Plant Pathology
- Volume:
- 26
- Issue:
- 2
- ISSN:
- 1464-6722
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Summary In flowering plants, cell–cell communication plays a key role in reproductive success, as both pollination and fertilization require pathways that regulate interactions between many different cell types. Some of the most critical of these interactions are those between the pollen tube (PT) and the embryo sac, which ensure the delivery of sperm cells required for double fertilization. Synergid cells function to attract thePTthrough secretion of small peptides and inPTreception via membrane‐bound proteins associated with the endomembrane system and the cell surface. While many synergid‐expressed components regulatingPTattraction and reception have been identified, few tools exist to study the localization of membrane‐bound proteins and the components of the endomembrane system in this cell type. In this study, we describe the localization and distribution of seven fluorescent markers that labelled components of the secretory pathway in synergid cells ofArabidopsis thaliana. These markers were used in co‐localization experiments to investigate the subcellular distribution of the twoPTreception componentsLORELEI, aGPI‐anchored surface protein, andNORTIA, aMILDEW RESISTANCE LOCUSO protein, both found within the endomembrane system of the synergid cell. These secretory markers are useful tools for both reproductive and cell biologists, enabling the analysis of membrane‐associated trafficking within a haploid cell actively involved in polar transport.more » « less
- 
            Societal Impact StatementGroundcherry (Physalis grisea) is a plant species grown for its flavorful fruit. The fruit drops from the plant, hence the common name groundcherry. This makes harvest cumbersome and puts the fruit at risk for carrying soil‐borne pathogens, therefore making them unsellable. Furthermore, insects often damage the plants, reducing yield. Advances in gene editing offer promise for addressing these issues and aiding home gardeners and farmers. Improvement will expand access to this nutritious fruit, rich in potassium, vitamin C, and antioxidants. Additionally, studies of its biology could serve as a model for improving other fruiting plants, particularly underutilized species. SummaryP. griseais an underutilized, semidomesticated fruit crop with rising agronomic value. Several resources have been developed for its use in fundamental biological research, including a plant transformation system and a high‐quality reference genome. Already,P. griseahas been used as a model to investigate biological phenomena including inflated calyx syndrome and gene compensation.P. griseahas also been used to demonstrate the potential of fast‐tracking domestication trait improvement through approaches such as CRISPR/Cas9 gene editing. This work has led to thePhysalisImprovement Project, which relies on reverse genetics to understand the mechanisms that underlie fruit abscission and plant–herbivore interactions to guide approaches for improvement of undesirable characteristics. CRISPR/Cas9 gene editing has been used to targetP. griseagenes that are suspected to act in fruit abscission, particularly orthologs of those that are reported in tomato abscission zone development. A similar approach is being taken to targetP. griseagenes involved in the withanolide biosynthetic pathway to determine the impact of withanolides on plant–herbivore interactions. Results from these research projects will lead to a greater understanding of important biological processes and will also generate knowledge needed to develop cultivars with reduced fruit drop and increased resistance to insect herbivory.more » « less
- 
            Abstract Previously, sugarcane mosaic virus (SCMV) was developed as a vector for transient expression of heterologous genes inZea mays(maize). Here, we show that SCMV can also be applied for virus‐induced gene silencing (VIGS) of endogenous maize genes. Comparison of sense and antisense VIGS constructs targeting maizephytoene desaturase(PDS) showed that antisense constructs resulted in a greater reduction in gene expression. In a time course of gene expression after infection with VIGS constructs targetingPDS,lesion mimic 22(Les22), andIodent japonica 1(Ij1), efficient expression silencing was observed 2, 3, and 4 weeks after infection with SCMV. However, at Week 5, expression ofLes22andIj1was no longer significantly reduced compared with control plants. The defense signaling molecule jasmonate‐isoleucine (JA‐Ile) can be inactivated by 12C‐hydroxylation and hydrolysis, and knockout of these genes leads to herbivore resistance. JA‐Ile hydroxylases and hydrolases have been investigated in Arabidopsis, rice, andNicotiana attenuata. To determine whether the maize homologs of these genes function in plant defense, we silenced expression ofZmCYP94B1(predicted JA‐Ile hydroxylase) andZmJIH1(predicted JA‐Ile hydrolase) by VIGS with SCMV, which resulted in elevated expression of two defense‐related genes,Maize Proteinase Inhibitor(MPI) andRibosome Inactivating Protein 2(RIP2). AlthoughZmCYP94B1andZmJIH1gene expression silencing increased resistance toSpodoptera frugiperda(fall armyworm),Schistocerca americana(American birdwing grasshopper), andRhopalosiphum maidis(corn leaf aphid), there was no additive effect from silencing the expression of both genes. Further work will be required to determine the more precise functions of these enzymes in regulating maize defenses.more » « less
- 
            Summary Like metazoans, plants use small regulatoryRNAs (sRNAs) to direct gene expression. Several classes ofsRNAs, which are distinguished by their origin and biogenesis, exist in plants. Among them, microRNAs (miRNAs) andtrans‐acting small interferingRNAs (ta‐siRNAs) mainly inhibit gene expression at post‐transcriptional levels. In the past decades, plant miRNAs and ta‐siRNAs have been shown to be essential for numerous developmental processes, including growth and development of shoots, leaves, flowers, roots and seeds, among others. In addition, miRNAs and ta‐siRNAs are also involved in the plant responses to abiotic and biotic stresses, such as drought, temperature, salinity, nutrient deprivation, bacteria, virus and others. This review summarizes the roles of miRNAs and ta‐siRNAs in plant physiology and development.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
