skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Calculation of rovibrational eigenstates of H3+ using ScalIT
H 3 + is a key player in molecular astrophysics, appearing in the interstellar medium and in the atmospheres of gas giants. It also plays an important role in star formation, and it has also been detected in supernova remnants. In theoretical chemistry, H3+ has long been a benchmark polyatomic system for high-level electronic-structure computations, as well as for quantum dynamics studies. In this work, exact quantum dynamical calculations are carried out for H3+, using the ScalIT suite of parallel codes, applied to two spectroscopically accurate potential energy surfaces. Specifically, rovibrational energy levels and wavefunctions are computed and labeled. Sixty vibrational states (for J = 0) are first determined, and then, rotational excitations for each of these “vibrational parent” states are computed up to total angular momentum J = 46, which is the highest value for which bound states of this molecule exist (D0 ∼ 35 000 cm−1). For these calculations, a very tight basis set convergence of a few 10−4 cm−1 (or less) has been achieved for almost all the computed energy levels. Where comparisons can be made, our results are found to agree well with earlier calculations and experimental data.  more » « less
Award ID(s):
1665370
PAR ID:
10597234
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Volume:
11
Issue:
4
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In a recent article [AIP Adv. 11, 045033 (2021)], we carried out exact quantum dynamical calculations and computed ro-vibrational energy levels and wave functions for the H 3 + molecular ion up to the dissociation threshold (at J = 46) using a recently developed potential energy surface (PES) [Mol. Phys. 117, 1663 (2019)]—arguably, the most accurate to date —together with the ScalIT suite of parallel codes. In this work, we further improved the convergence accuracy and range of our ScalIT calculations for all J values up to J = 20 to a few 10 –5  cm −1 (or better). In addition, we performed an ab initio assignment of the ro-vibrational energy levels, providing vibrational ‘ v 1 , v 2 , | l |’ and rotational ‘ J , G , U , K ’ quantum labels for more than 2,200 ro-vibrational states, including every single 0 ≤ J ≤ 20 state up to and above the barrier to linearity at 10,000 cm −1 . The main underlying motivation of our work is to provide a list of reliably labeled, spectroscopically accurate energy levels in a format that can be used in spectroscopic line lists, which are based on both experimental and theoretical levels. Such line lists are of huge importance in various astrochemical and astrophysical contexts. 
    more » « less
  2. We present fully coupled, full-dimensional quantum calculations of the inter- and intra-molecular vibrational states of HCl trimer, a paradigmatic hydrogen-bonded molecular trimer. They are performed utilizing the recently developed methodology for the rigorous 12D quantum treatment of the vibrations of the noncovalently bound trimers of flexible diatomic molecules [Felker and Bačić, J. Chem. Phys. 158, 234109 (2023)], which was previously applied to the HF trimer by us. In this work, the many-body 12D potential energy surface (PES) of (HCl)3 [Mancini and Bowman, J. Phys. Chem. A 118, 7367 (2014)] is employed. The calculations extend to the intramolecular HCl-stretch excited vibrational states of the trimer with one- and two-quanta, together with the low-energy intermolecular vibrational states in the two excited v = 1 intramolecular vibrational manifolds. They reveal significant coupling between the intra- and inter-molecular vibrational modes. The 12D calculations also show that the frequencies of the v = 1 HCl stretching states of the HCl trimer are significantly redshifted relative to those of the isolated HCl monomer. Detailed comparison is made between the results of the 12D calculations on the two-body PES, obtained by removing the three-body term from the original 2 + 3-body PES, and those computed on the 2 + 3-body PES. It demonstrates that the three-body interactions have a strong effect on the trimer binding energy as well as on its intra- and inter-molecular vibrational energy levels. Comparison with the available spectroscopic data shows that good agreement with the experiment is achieved only if the three-body interactions are included. Some low-energy vibrational states localized in a secondary minimum of the PES are characterized as well. 
    more » « less
  3. Some reactions produce extremely hot nascent-products which nevertheless can form sufficiently long-lived van der Waals (vdW) complexes—with atoms or molecules from a bath gas—as to be observed via microwave spectroscopy. Theoretical calculations of such unbound resonance-states can be much more challenging than ordinary bound-state calculations depending on the approach employed. One encounters not only the floppy, and perhaps multi-welled potential energy surface (PES) characteristic of vdWs complexes, but in addition must contend with excitation of the intramolecular modes and its corresponding influence on the PES. Straightforward computation of the (resonance) rovibrational levels of interest, involves the added complication of the unbound nature of the wavefunction, often treated with techniques such as introducing a complex absorbing potential. Here, we have demonstrated that a simplified approach of making a series of vibrationally effective PESs for the intermolecular coordinates—one for each reaction product vibrational quantum number of interest—can produce vdW levels for the complex with spectroscopic accuracy. This requires constructing a series of appropriately weighted lower-dimensional PESs for which we use our freely available PES-fitting code AUTOSURF. The applications of this study are the Ar–CS and Ar–SiS complexes, which are isovalent to Ar–CO and Ar–SiO, the latter of which we considered in a previously reported study. Using a series of vibrationally effective PESs, rovibrational levels and predicted microwave transition frequencies for both complexes were computed variationally. A series of shifting rotational transition frequencies were also computed as a function of the diatom vibrational quantum number. The predicted transitions were used to guide and inform an experimental effort to make complementary observations. Comparisons are given for the transitions that are within the range of the spectrometer and were successfully recorded. Calculations of the rovibrational level pattern agree to within 0.2 % with experimental measurements. 
    more » « less
  4. In this work the H2O–HCN complex is quantitatively characterized in two ways. First, we report a new rigid-monomer 5D intermolecular potential energy surface (PES) for this complex, calculated using the symmetry-adapted perturbation theory based on density functional theory method. The PES is based on 2833 ab initio points computed employing the aug-cc-pVQZ basis set, utilizing the autoPES code, which provides a site-site analytical fit with the long-range region given by perturbation theory. Next, we present the results of the quantum 5D calculations of the fully coupled intermolecular rovibrational states of the H2O–HCN complex for the total angular momentum J values of 0, 1, and 2, performed on the new PES. These calculations rely on the quantum bound-state methodology developed by us recently and applied to a variety of noncovalently bound binary molecular complexes. The vibrationally averaged ground-state geometry of H2O–HCN determined from the quantum 5D calculations agrees very well with that from the microwave spectroscopic measurements. In addition, the computed ground-state rotational transition frequencies, as well as the B and C rotational constants calculated for the ground state of the complex, are in excellent agreement with the experimental values. The assignment of the calculated intermolecular vibrational states of the H2O–HCN complex is surprisingly challenging. It turns out that only the excitations of the intermolecular stretch mode can be assigned with confidence. The coupling among the angular degrees of freedom (DOFs) of the complex is unusually strong, and as a result most of the excited intermolecular states are unassigned. On the other hand, the coupling of the radial, intermolecular stretch mode and the angular DOFs is weak, allowing straightforward assignment of the excitation of the former. 
    more » « less
  5. We use optical–optical double-resonance spectroscopy with a continuous wave (CW) pump and a cavity-enhanced frequency comb probe to measure the energy levels of methane in the upper part of the triacontad polyad (P6) with higher rotational quantum numbers than previously assigned. A high-power CW optical parametric oscillator, tunable around 3000 cm−1, is consecutively locked to the P(7, A2), Q(7, A2), R(7, A2), and Q(6, F2) transitions in the ν3 band, and a comb covering the 5800–6100 cm−1 range probes sub-Doppler ladder-type transitions from the pumped levels with J′ = 6 to 8, respectively. We report 118 probe transitions in the 3ν3 ← ν3 spectral range with uncertainties down to 300 kHz (1 × 10−5 cm−1), reaching 84 unique final states in the 9070–9370 cm−1 range with rotational quantum numbers J between 5 and 9. We assign these states using combination differences and by comparison with theoretical predictions from a new ab initio-based effective Hamiltonian and dipole moment operator. This is the first line-by-line experimental verification of theoretical predictions for these hot-band transitions, and we find a better agreement of transition wavenumbers with the new calculations compared to the TheoReTS/HITEMP and ExoMol databases. We also compare the relative intensities and find an overall good agreement with all three sets of predictions. Finally, we report the wavenumbers of 27 transitions in the 2ν3 spectral range, observed as V-type transitions from the ground state, and compare them to the new Hamiltonian, HITRAN2020, ExoMol, and the WKMLC line lists. 
    more » « less