Abstract A coupled resonant acoustic waveguide (CRAW) in a phononic crystal (PnC) was engineered to manipulate the propagation of ultrasonic waves within a conventional phononic bandgap for wavelength division multiplexing. The PnC device included two, forked, distinct CRAW waveguide channels that exhibited strong frequency and mode selectivity. Each branch was composed of cavities of differing volumes, with each giving rise to deep and shallow ‘impurity’ states. These states were utilized to select frequency windows where transmission along the channels was suppressed distinctly for each channel. Though completely a linear system, the mode sensitivity of each CRAW waveguide channel produced apparent nonlinear power dependence along each branch. Nonlinearity in the system arises from the combination of the mode sensitivity of each CRAW channel and small variations in the shape of the incident wavefront as a function of input power. The all-acoustic effect was then leveraged to realize an ultrasonic, spatial signal modulator, and logic element operating at 398 and 450 kHz using input power.
more »
« less
Acoustic waveguide demultiplexer based on Fano resonance: Experiment and simulation
A compact acoustic waveguide demultiplexer configuration is studied via finite-element numerical modeling and audio frequency experiments. The demultiplexer consists of a Y-shaped waveguide with a single input and two outputs. The narrow transmission bands created by stubs side-loaded on each output arm lead to selective transmission of certain frequencies. The experimental work characterizes the broadband response along each output arm by using an impulse response method. Finite-element numerical simulations are conducted using COMSOL. The results of the experiment and the simulation are compared to an existing analytic theory.
more »
« less
- Award ID(s):
- 1757493
- PAR ID:
- 10597422
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 12
- Issue:
- 4
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Material properties of brain white matter (BWM) show high anisotropy due to the complicated internal three-dimensional microstructure and variant interaction between heterogeneous brain-tissue (axon, myelin, and glia). From our previous study, finite element methods were used to merge micro-scale Representative Volume Elements (RVE) with orthotropic frequency domain viscoelasticity to an integral macro-scale BWM. Quantification of the micro-scale RVE with anisotropic frequency domain viscoelasticity is the core challenge in this study. The RVE behavior is expressed by a viscoelastic constitutive material model, in which the frequency-related viscoelastic properties are imparted as storage modulus and loss modulus for the composite comprised of axonal fibers and extracellular glia. Using finite elements to build RVEs with anisotropic frequency domain viscoelastic material properties is computationally very consuming and resource-draining. Additionally, it is very challenging to build every single RVE using finite elements since the architecture of each RVE is arbitrary in an infinite data set. The architecture information encoded in the voxelized location is employed as input data and is consequently incorporated into a deep 3D convolution neural network (CNN) model that cross-references the RVEs’ material properties (output data). The output data (RVEs’ material properties) is calculated in parallel using an in-house developed finite element method, which models RVE samples of axon-myelin-glia composites. This novel combination of the CNN-RVE method achieved a dramatic reduction in the computation time compared with directly using finite element methods currently present in the literature.more » « less
-
Advances in mid-IR lasers, detectors, and nanofabrication technology have enabled new device architectures to implement on-chip sensing applications. In particular, direct integration of plasmonic resonators with a dielectric waveguide can generate an ultra-compact device architecture for biochemical sensing via surface-enhanced infrared absorption (SEIRA) spectroscopy. A theoretical investigation of such a hybrid architecture is imperative for its optimization. In this work, we investigate the coupling mechanism between a plasmonic resonator array and a waveguide using temporal coupled-mode theory and numerical simulation. The results conclude that the waveguide transmission extinction ratio reaches maxima when the resonator-waveguide coupling rate is maximal. Moreover, after introducing a model analyte in the form of an oscillator coupled with the plasmonics-waveguide system, the transmission curve with analyte absorption can be fitted successfully. We conclude that the extracted sensing signal can be maximized when analyte absorption frequency is the same as the transmission minima, which is different from the plasmonic resonance frequency. This conclusion is in contrast to the dielectric resonator scenario and provides an important guideline for design optimization and sensitivity improvement of future devices.more » « less
-
The application of acoustic ring resonator structures for the manipulation of audio frequency acoustic waves is demonstrated experimentally and via numerical simulation. Three ring resonator systems are demonstrated: a simple single ring structure that acts as a comb/notch filter, a single ring between two parallel waveguides that acts as an add-drop filter, and a sequential array of equally spaced rings that creates acoustic bandgaps. The experiments are conducted in linear waveguides using an impulse response method. The ring resonators were created via 3D printing. Finite element numerical simulations were conducted using COMSOL.more » « less
-
Abstract Dynamic elastography, whether based on magnetic resonance, ultrasound, or optical modalities, attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasi-static tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues currently being studied using elastography, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article a configuration, inspired by muscle elastography but generalizable to other applications, is analytically and experimentally studied. A hyperelastic polymer phantom cylinder is statically elongated in the axial direction while its response to transverse-polarized vibratory excitation is measured. We examine the interplay between uniaxial prestress and waveguide effects in this muscle-like tissue phantom using computational finite element simulations and magnetic resonance elastography measurements. Finite deformations caused by prestress coupled with waveguide effects lead to results that are predicted by a coordinate transformation approach that has been previously used to simplify reconstruction of anisotropic properties using elastography. Here, the approach estimates material viscoelastic properties that are independent of the nonhomogeneous prestress conditions without requiring advanced knowledge of those stress conditions.more » « less
An official website of the United States government
