We present the design, bench-top setup, and experimental results of a compact heterodyne interferometer that achieves picometer-level displacement sensitivities in air over frequencies above 100 MHz. The optical configuration with spatially separated beams prevents frequency and polarization mixing, and therefore eliminates periodic errors. The interferometer is designed to maximize common-mode optical laser beam paths to obtain high rejection of environmental disturbances, such as temperature fluctuations and acoustics. The results of our experiments demonstrate the short- and long-term stabilities of the system during stationary and dynamic measurements. In addition, we provide measurements that compare our interferometer prototype with a commercial system, verifying our higher sensitivity of 3 pm, higher thermal stability by a factor of two, and periodic-error-free performance.
more »
« less
A modified Michelson interferometer to measure sub-milliradian changes in angle
Modern short-range gravity experiments that seek to test the Newtonian inverse-square law or weak equivalence principle of general relativity typically involve measuring the minute variations in the twist angle of a torsion pendulum. Motivated by various theoretical arguments, recent efforts largely focus on measurements with test mass separations in the sub-millimeter regime. To measure the twist, many experiments employ an optical autocollimator with a noise performance of ∼300 nrad/Hz in the 0.1–10 mHz band, enabling a measurement uncertainty of a few nanoradians in a typical integration time. We investigated an alternative method for measuring a small twist angle through the construction of a modified Michelson interferometer. The main modification is the introduction of two additional arms that allow for improved angular alignment. A series of detectors and LabView software routines were developed to determine the orientation of a mirror attached to a sinusoidally driven rotation stage that oscillated with an amplitude of 0.35 mrad and a period of 200 s. In these measurements, the resolution of the interferometer is 8.1 μrad per fringe, while its dynamic range spanned 0.962 mrad. We compare the performance of this interferometric optical system to existing autocollimator-based methods, discussing its implementation, possible advantages, and future potential, as well as disadvantages and limitations.
more »
« less
- PAR ID:
- 10597427
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 12
- Issue:
- 8
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fluorescence-detected Fourier transform (FT) spectroscopy is a technique in which the relative paths of an optical interferometer are controlled to excite a material sample, and the ensuing fluorescence is detected as a function of the interferometer path delay and relative phase. A common approach to enhance the signal-to-noise ratio in these experiments is to apply a continuous phase sweep to the relative optical path, and to detect the resulting modulated fluorescence using a phase-sensitive lock-in amplifier. In many important situations, the fluorescence signal is too weak to be measured using a lock-in amplifier, so that photon counting techniques are preferred. Here we introduce an approach to low-signal fluorescence-detected FT spectroscopy, in which individual photon counts are assigned to a modulated interferometer phase (‘phase-tagged photon counting,’ or PTPC), and the resulting data are processed to construct optical spectra. We studied the fluorescence signals of a molecular sample excited resonantly by a pulsed coherent laser over a range of photon flux and visibility levels. We compare the performance of PTPC to standard lock-in detection methods and establish the range of signal parameters over which meaningful measurements can be carried out. We find that PTPC generally outperforms the lock-in detection method, with the dominant source of measurement uncertainty being associated with the statistics of the finite number of samples of the photon detection rate.more » « less
-
We present a magneto-optical Kerr effect (MOKE) spectrometer based on a modified Martin–Puplett interferometer, utilizing continuous wave sub-THz low-power radiation in a broad frequency range. This spectrometer is capable of measuring the frequency dependence of the MOKE response function, both the Kerr rotation and ellipticity, simultaneously, with accuracy limited by a sub-milliradian threshold, without the need for a reference measurement. The instrument’s versatility allows it to be coupled to a cryostat with optical windows, enabling studies of a variety of quantum materials such as unconventional superconductors, two-dimensional electron gas systems, quantum magnets, and other systems showing optical Hall response at sub-Kelvin temperatures and in high magnetic fields. We demonstrate the functionality of the MOKE spectrometer using an undoped InSb wafer as a test sample.more » « less
-
Abstract It is highly desirable for future measurements of Newton’s gravitational constant G to use test/source masses that allow nondestructive, quantitative internal density gradient measurements. High density optically transparent materials are ideally suited for this purpose since their density gradient can be measured with laser interferometry, and they allow in-situ optical metrology methods for the critical distance measurements often needed in a G apparatus. We present an upper bound on possible internal density gradients in lead tungstate (PbWO 4 ) crystals determined using a laser interferometer. We placed an upper bound on the fractional atomic density gradient in two PbWO 4 test crystals of 1 ρ d ρ d x < 2.1 × 1 0 − 8 cm −1 . This value is more than two orders of magnitude smaller than what is required for G measurements. They are also consistent with but more sensitive than a recently reported measurements of the same samples, using neutron interferometry. These results indicate that PbWO 4 crystals are well suited to be used as test masses in G experiments. Future measurements of internal density gradients of test masses used for measurements of G can now be conducted non-destructively for a wide range of possible test masses.more » « less
-
Absolute density measurements of low-ionization-degree or low-density plasmas ionized by lasers are very important for understanding strong-field physics, atmospheric propagation of intense laser pulses, Lidar etc. A cross-polarized common-path temporal interferometer using balanced detection was developed for measuring plasma density with a sensitivity of ∼0.6 mrad, equivalent to a plasma density-length product of ∼2.6 × 1013cm−2if using an 800 nm probe laser. By using this interferometer, we have investigated strong-field ionization yield versus intensity for various noble gases (Ar, Kr, and Xe) using 800 nm, 55 fs laser pulses with both linear (LP) and circular (CP) polarization. The experimental results were compared to the theoretical models of Ammosov-Delone-Krainov (ADK) and Perelomov-Popov-Terent’ev (PPT). We find that the measured phase change induced by plasma formation can be explained by the ADK theory in the adiabatic tunneling ionization regime, while PPT model can be applied to all different regimes. We have also measured the photoionization and fractional photodissociation of molecular (MO) hydrogen. By comparing our experimental results with PPT and MO-PPT models, we have determined the likely ionization pathways when using three different pump laser wavelengths of 800 nm, 400 nm, and 267 nm.more » « less
An official website of the United States government
