Minority carrier diffusion length in undoped p-type gallium oxide was measured at various temperatures as a function of electron beam charge injection by electron beam-induced current technique in situ using a scanning electron microscope. The results demonstrate that charge injection into p-type β-gallium oxide leads to a significant linear increase in minority carrier diffusion length followed by its saturation. The effect was ascribed to trapping of non-equilibrium electrons (generated by a primary electron beam) on metastable native defect levels in the material, which in turn blocks recombination through these levels. While previous studies of the same material were focused on probing a non-equilibrium carrier recombination by purely optical means (cathodoluminescence), in this work, the impact of charge injection on minority carrier diffusion was investigated. The activation energy of ∼0.072 eV, obtained for the phenomenon of interest, is consistent with the involvement of Ga vacancy-related defects.
more »
« less
Cathodoluminescence studies of electron injection effects in p-type gallium oxide
It has recently been demonstrated that electron beam injection into p-type β-gallium oxide leads to a significant linear increase in minority carrier diffusion length with injection duration, followed by its saturation. The effect was ascribed to trapping of non-equilibrium electrons (generated by a primary electron beam) at meta-stable native defect levels in the material, which in turn blocks recombination through these levels. In this work, in contrast to previous studies, the effect of electron injection in p-type Ga2O3 was investigated using cathodoluminescence technique in situ in scanning electron microscope, thus providing insight into minority carrier lifetime behavior under electron beam irradiation. The activation energy of ∼0.3 eV, obtained for the phenomenon of interest, is consistent with the involvement of Ga vacancy-related defects.
more »
« less
- PAR ID:
- 10597484
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 14
- Issue:
- 8
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The impact of electron injection, using 10 keV beam of a Scanning Electron Microscope, on minority carrier transport in Si-doped β-Ga2O3 was studied for temperatures ranging from room to 120°C. In-situ Electron Beam-Induced Current technique was employed to determine the diffusion length of minority holes as a function of temperature and duration of electron injection. The experiments revealed a pronounced elongation of hole diffusion length with increasing duration of injection. The activation energy, associated with the electron injection-induced elongation of the diffusion length, was determined at ∼ 74 meV and matches the previous independent studies. It was additionally discovered that an increase of the diffusion length in the regions affected by electron injection is accompanied by a simultaneous decrease of cathodoluminescence intensity. Both effects were attributed to increasing non-equilibrium hole lifetime in the valence band of β-Ga2O3 semiconductor.more » « less
-
The influence of various energetic particles and electron injection on the transport of minority carriers and non-equilibrium carrier recombination in Ga2O3 is summarized in this review. In Ga2O3 semiconductors, if robust p-type material and bipolar structures become available, the diffusion lengths of minority carriers will be of critical significance. The diffusion length of minority carriers dictates the functionality of electronic devices such as diodes, transistors, and detectors. One of the problems in ultrawide-bandgap materials technology is the short carrier diffusion length caused by the scattering on extended defects. Electron injection in n- and p-type gallium oxide results in a significant increase in the diffusion length, even after its deterioration, due to exposure to alpha and proton irradiation. Furthermore, post electron injection, the diffusion length of an irradiated material exceeds that of Ga2O3 prior to irradiation and injection. The root cause of the electron injection-induced effect is attributed to the increase in the minority carrier lifetime in the material due to the trapping of non-equilibrium electrons on native point defects. It is therefore concluded that electron injection is capable of “healing” the adverse impact of radiation in Ga2O3 and can be used for the control of minority carrier transport and, therefore, device performance.more » « less
-
We report the effect of extended duration electron beam exposure on the minority carrier transport properties of 10 MeV proton irradiated (fluence ∼1014cm−2) Si-dopedβ-Ga2O3Schottky rectifiers. The diffusion length (L) of minority carriers is found to decrease with temperature from 330 nm at 21 °C to 289 nm at 120 °C, with an activation energy of ∼26 meV. This energy corresponds to the presence of shallow Si trap-levels. Extended duration electron beam exposure enhancesLfrom 330 nm to 726 nm at room temperature. The rate of increase forLis lower with increased temperature, with an activation energy of 43 meV. Finally, a brief comparison of the effect of electron injection on proton irradiated, alpha-particle irradiated and a reference Si-dopedβ-Ga2O3Schottky rectifiers is presented.more » « less
-
Highly resistive undoped p-type gallium oxide samples were subjected to cumulative proton irradiation with energies ranging from 25 to 70 keV and doses in the 1.6 × 1014–3.6 × 1014cm−2range. Proton irradiation resulted in up to a factor of 2 reduction of minority electron diffusion length in the samples for temperatures between ∼ 300 and 400 K. Electron injection into the samples under test using a scanning electron microscope beam leads to pronounced elongation of diffusion length beyond the pre-irradiation values, thus demonstrating stable (days after injection) recovery of adverse radiation impact on minority carrier transport. The activation energy of 91 meV estimated from the temperature dependent diffusion length vs electron injection duration experiments is likely related to the local potential barrier height for native defects associated with the phenomenon of interest.more » « less
An official website of the United States government
