skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Mn-porphyrins in a four-helix bundle participate in photo-induced electron transfer with a bacterial reaction center
Hybrid complexes incorporating synthetic Mn-porphyrins into an artificial four-helix bundle domain of bacterial reaction centers created a system to investigate new electron transfer pathways. The reactions were initiated by illumination of the bacterial reaction centers, whose primary photochemistry involves electron transfer from the bacteriochlorophyll dimer through a series of electron acceptors to the quinone electron acceptors. Porphyrins with diphenyl, dimesityl, or fluorinated substituents were synthesized containing either Mn or Zn. Electrochemical measurements revealed potentials for Mn(III)/Mn(II) transitions that are ~ 0.4 V higher for the fluorinated Mn-porphyrins than the diphenyl and dimesityl Mn-porphyrins. The synthetic porphyrins were introduced into the proteins by binding to a four-helix bundle domain that was genetically fused to the reaction center. Light excitation of the bacteriochlorophyll dimer of the reaction center resulted in new derivative signals, in the 400 to 450 nm region of light-minus-dark spectra, that are consistent with oxidation of the fluorinated Mn(II) porphyrins and reduction of the diphenyl and dimesityl Mn(III) porphyrins. These features recovered in the dark and were not observed in the Zn(II) porphyrins. The amplitudes of the signals were dependent upon the oxidation/reduction midpoint potentials of the bacteriochlorophyll dimer. These results are interpreted as photo-induced charge-separation processes resulting in redox changes of the Mn-porphyrins, demonstrating the utility of the hybrid artificial reaction center system to establish design guidelines for novel electron transfer reactions.  more » « less
Award ID(s):
2419437
PAR ID:
10597602
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Photosynthesis Research
Volume:
162
Issue:
2-3
ISSN:
0166-8595
Page Range / eLocation ID:
1 to 14
Subject(s) / Keyword(s):
Photosynthesis reaction centers, Rhodobacter sphaeroides
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A biohybrid model system is described that interfaces synthetic Mn-oxides with bacterial reaction centers to gain knowledge concerning redox reactions by metal clusters in proteins, in particular the Mn4CaO5 cluster of photosystem II. The ability of Mn-oxides to bind to modified bacterial reaction centers and transfer an electron to the light-induced oxidized bacteri- ochlorophyll dimer, P+, was characterized using optical spectroscopy. The environment of P was altered to obtain a high P/ P+ midpoint potential. In addition, different metal-binding sites were introduced by substitution of amino acid residues as well as extension of the C-terminus of the M subunit with the C-terminal region of the D1 subunit of photosystem II. The Mn-compounds MnO2, αMn2O3, Mn3O4, CaMn2O4, and Mn3(PO4)2 were tested and compared to MnCl2. In general, addition of the Mn-compounds resulted in a decrease in the amount of P+ while the reduced quinone was still present, demonstrating that the Mn-compounds can serve as secondary electron donors. The extent of P+ reduction for the Mn-oxides was largest for αMn2O3 and CaMn2O4 and smallest for Mn3O4 and MnO2. The addition of Mn3(PO4)2 resulted in nearly complete P+ reduc- tion, similar to MnCl2. Overall, the activity was correlated with the initial oxidation state of the Mn-compound. Transient optical measurements showed a fast kinetic component, assigned to reduction of P+ by the Mn-oxide, in addition to a slow component due to charge recombination. The results support the conjecture that the incorporation of Mn-oxides by ancient anoxygenic phototrophs was a step in the evolution of oxygenic photosynthesis. 
    more » « less
  2. The enzymes manganese superoxide dismutase and manganese lipoxygenase use Mn III –hydroxo centres to mediate proton-coupled electron transfer (PCET) reactions with substrate. As manganese is earth-abundant and inexpensive, manganese catalysts are of interest for synthetic applications. Recent years have seen exciting reports of enantioselective C–H bond oxidation by Mn catalysts supported by aminopyridyl ligands. Such catalysts offer economic and environmentally-friendly alternatives to conventional reagents and catalysts. Mechanistic studies of synthetic catalysts highlight the role of Mn–oxo motifs in attacking substrate C–H bonds, presumably by a concerted proton–electron transfer (CPET) step. (CPET is a sub-class of PCET, where the proton and electron are transferred in the same step.) Knowledge of geometric and electronic influences for CPET reactions of Mn–hydroxo and Mn–oxo adducts enhances our understanding of biological and synthetic manganese centers and informs the design of new catalysts. In this Feature article, we describe kinetic, spectroscopic, and computational studies of Mn III –hydroxo and Mn IV –oxo complexes that provide insight into the basis for the CPET reactivity of these species. Systematic perturbations of the ligand environment around Mn III –hydroxo and Mn IV –oxo motifs permit elucidation of structure–activity relationships. For Mn III –hydroxo centers, electron-deficient ligands enhance oxidative reactivity. However, ligand perturbations have competing consequences, as changes in the Mn III/II potential, which represents the electron-transfer component for CPET, is offset by compensating changes in the p K a of the Mn II –aqua product, which represents the proton-transfer component for CPET. For Mn IV –oxo systems, a multi-state reactivity model inspired the development of significantly more reactive complexes. Weakened equatorial donation to the Mn IV –oxo unit results in large rate enhancements for C–H bond oxidation and oxygen-atom transfer reactions. These results demonstrate that the local coordination environment can be rationally changed to enhance reactivity of Mn III –hydroxo and Mn IV –oxo adducts. 
    more » « less
  3. Abstract Oxalate decarboxylase fromBacillus subtilisis a binuclear Mn‐dependent acid stress response enzyme that converts the mono‐anion of oxalic acid into formate and carbon dioxide in a redox neutral unimolecular disproportionation reaction. A π‐stacked tryptophan dimer, W96 and W274, at the interface between two monomer subunits facilitates long‐range electron transfer between the two Mn ions and plays an important role in the catalytic mechanism. Substitution of W96 with the unnatural amino acid 5‐hydroxytryptophan leads to a persistent EPR signal which can be traced back to the neutral radical of 5‐hydroxytryptophan with its hydroxyl proton removed. 5‐Hydroxytryptophan acts as a hole sink preventing the formation of Mn(III) at the N‐terminal active site and strongly suppresses enzymatic activity. The lower boundary of the standard reduction potential for the active site Mn(II)/Mn(III) couple can therefore be estimated as 740 mV against the normal hydrogen electrode at pH 4, the pH of maximum catalytic efficiency. Our results support the catalytic importance of long‐range electron transfer in oxalate decarboxylase while at the same time highlighting the utility of unnatural amino acid incorporation and specifically the use of 5‐hydroxytryptophan as an energetic sink for hole hopping to probe electron transfer in redox proteins. 
    more » « less
  4. Redox active species in Arctic lacustrine sediments play an important, regulatory role in the carbon cycle, yet there is little information on their spatial distribution, abundance, and oxidation states. Here, we use voltammetric microelectrodes to quantify the in situ concentrations of redox-active species at high vertical resolution (mm to cm) in the benthic porewaters of an oligotrophic Arctic lake (Toolik Lake, AK, USA). Mn( ii ), Fe( ii ), O 2 , and Fe( iii )-organic complexes were detected as the major redox-active species in these porewaters, indicating both Fe( ii ) oxidation and reductive dissolution of Fe( iii ) and Mn( iv ) minerals. We observed significant spatial heterogeneity in their abundance and distribution as a function of both location within the lake and depth. Microbiological analyses and solid phase Fe( iii ) measurements were performed in one of the Toolik Lake cores to determine the relationship between biogeochemical redox gradients and microbial communities. Our data reveal iron cycling involving both oxidizing (FeOB) and reducing (FeRB) bacteria. Additionally, we profiled a large microbial iron mat in a tundra seep adjacent to an Arctic stream (Oksrukuyik Creek) where we observed Fe( ii ) and soluble Fe( iii ) in a highly reducing environment. The variable distribution of redox-active substances at all the sites yields insights into the nature and distribution of the important terminal electron acceptors in both lacustrine and tundra environments capable of exerting significant influences on the carbon cycle. 
    more » « less
  5. The importance of electron deficient Tp ligands motivates the introduction of electron-withdrawing substituents into the scorpionate framework. Since perfluorophenyltris(pyrazol-1-yl)borate affects significant anodic shifts in half-cell potentials in their metal complexes relative those of phenyltris(pyrazol-1-yl)borate analogues, the tuning opportunities achieved using 3,4,5-trifluorophenyl- and 3,5-bis(trifluoromethyl)phenyl(pyrazol-1-yl)borates were explored. Bis(amino)boranes ((3,4,5-F)C 6 H 2 )B(NMe 2 ) 2 and ((3,5-CF 3 )C 6 H 3 )B(NMe 2 ) 2 are precursors to fluorinated tris(pyrazol-1-yl)phenylborates. Thallium salts of these scorpionates exhibit bridging asymmetric κ 3 - N , N , N coordination modes consistent with the reduced π-basicity of the fluorinated phenyl substituents relative those of other structurally characterized tris(pyrazol-1-yl)phenylborates. While a comparative analysis of the spectral and X-ray crystallographic data for classical Mo(0), Mo( ii ), Mn( i ), Fe( ii ) and Cu( ii ) complexes of [((3,4,5-F)C 6 H 2 )Bpz 3 ] − and [((3,5-CF 3 )C 6 H 3 )Bpz 3 ] − could not differentiate these ligands with respect to their metal-based electronic impacts, cyclic voltammetry suggests that 3,4,5-trifluorophenyl- and 3,5-bis(trifluoromethyl)phenyl(pyrazol-1-yl)borates affect similar anodic shifts within their metal complexes, with coordination of [((3,5-CF 3 )C 6 H 3 )Bpz 3 ] − rendering metal centers more difficult to oxidize, and sometimes even more difficult to oxidize than their [C 6 F 5 Bpz 3 ] − analogues. These data suggest that the extent of phenyl substituent fluorination necessary to minimize metal center electron-richness in phenyltris(pyrazol-1-yl)borate complexes cannot be confidently predicted. 
    more » « less