skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A BIOFILM CHANNEL ORIGIN FOR VERMIFORM MICROSTRUCTURE IN CARBONATE MICROBIALITES
Three-dimensional tubular microfabrics known as ‘vermiform microstructure’ in Phanerozoic and Neoproterozoic carbonate microbialites have been hypothesized to represent the body fossil of nonspicular keratosan demosponges. If correct, this interpretation extends the sponge body fossil record to ~890 Ma, in good agreement with molecular clock estimates for the emergence of metazoans. However, the veracity of the keratose sponge interpretation for tubular microstructures remains in question and the origin of the microtubule texture is enigmatic. Here, we compare exceptionally preserved microbialite textures from Upper Triassic microbialites to channel networks created by modern microbial biofilms. We demonstrate that anastomosing channel networks of similar size and geometries to ‘vermiform microstructure’, are produced by microbial biofilms in the absence of sponges, suggesting the origin for the three-dimensional tubular microfabric in ancient carbonates is not unique to sponges and perhaps best interpreted conservatively as likely microbial in origin. We present a taphonomic model of early biofilm lithification in seawater with anomalously high carbonate supersaturation necessary to preserve delicate microbial textures. This work has implications for the understanding of three-dimensional biofilm architecture that goes beyond the current micro-scale observations available from living biofilm experiments and suggests that biofilm channel networks have an extensive fossil record.  more » « less
Award ID(s):
2038374
PAR ID:
10597696
Author(s) / Creator(s):
; ; ; ;
Corporate Creator(s):
Publisher / Repository:
Geological Society of America Abstracts with Programs
Date Published:
Volume:
55
Issue:
6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT A three‐dimensional tubular fabric known as “vermiform microstructure” in Phanerozoic and Neoproterozoic carbonate microbialites has been hypothesized to represent the body fossil of nonspicular keratose demosponges. If correct, this interpretation extends the sponge body fossil record and origin of animals to ~890 Ma. However, the veracity of the keratose sponge interpretation for vermiform microstructure remains in question, and the origin of the tubular fabric is enigmatic. Here we compare exceptionally well‐preserved microbialite textures from the Upper Triassic to channel networks created by modern microbial biofilms. We demonstrate that anastomosing channel networks of similar size and geometries are produced by microbial biofilms in the absence of sponges, suggesting the origin for vermiform microstructure in ancient carbonates is not unique to sponges and perhaps best interpreted conservatively as likely microbial in origin. We present a taphonomic model of early biofilm lithification in seawater with anomalously high carbonate saturation necessary to preserve delicate microbial textures. This work has implications for the understanding of three‐dimensional biofilm architecture that goes beyond the current micro‐scale observations available from living biofilm experiments and suggests that biofilm channel networks have an extensive fossil record. 
    more » « less
  2. Abstract Reports of diverse vermiform and peloidal structures in Neoproterozoic to Mesozoic open marine to peritidal carbonates include cases interpreted to be keratose sponges. However, living keratose sponges have elaborate, highly elastic skeletons of spongin (a mesoscopic end‐member of a hierarchical assemblage of collagenous structures) lacking spicules, thus have poor preservation potential in contrast to the more easily fossilized spicule‐bearing sponges. Such interpreted fossil keratose sponges comprise diverse layered, network, amalgamated, granular and variegated microfabrics of narrow curved, branching, vesicular–cellular to irregular areas of calcite cement, thought to represent former spongin, embedded in microcrystalline to peloidal carbonate. Interpreted keratose sponges are presented in publications almost entirely in two‐dimensional (thin section) studies, usually displayed normal to bedding, lacking mesoscopic three‐dimensional views in support of a sponge body fossil. For these structures to be keratose sponges critically requires conversion of the spongin skeleton into the calcite cement component, under shallow‐burial conditions and this must have occurred prior to compaction. However, there is no robust petrographic–geochemical evidence that the fine‐grained carbonate component originated from sponge mummification (automicritic body fossilsviacalcification of structural tissue components) because in the majority of cases the fine‐grained component is homogenous and thus likely to be deposited sediment. Thus, despite numerous studies, verification of fossil keratose sponges is lacking. Although some may be sponges, all can be otherwise explained. Alternatives include: (i) meiofaunal activity; (ii) layered microbial (spongiostromate) accretion; (iii) sedimentary peloidal to clotted micrites; (iv) fluid escape and capture resulting in bird's eye to vuggy porosities; and (v) moulds of siliceous sponge spicules. Uncertainty of keratose sponge identification is fundamental and far‐reaching for understanding: (i) microfacies and diagenesis where they occur; (ii) fossil assemblages; and (iii) wider aspects of origins of animal clades, sponge ecology, evolution and the systemic recovery from mass extinctions. Thus, alternative explanations must be considered. 
    more » « less
  3. While molecular clock studies suggest a Tonian-Cryogenian (~800–635 Ma) emergence of the Porifera, convincing fossil evidence of sponges is seen only as far back as ~530 Ma. The >100 Ma lacuna for sponges represents a critical missing piece of the Neoproterozoic puzzle. Assembling an evolutionary framework requires that Poriferan antiquity be understood in terms of sponge form and function, and the emergence of suspension-feeding amid profound environmental and climatic change. Here we report newly discovered biomineralized fossils of sponge-grade animals in Neoproterozoic carbonates of Siberia, Australia, and Brazil. Using a wide range of petrographic, eProbe, µXRF, µCT, and serial grinding techniques, the sponge-grade fossils are shown to be remarkably preserved in three dimensions, displaying broad morphological characters associated with early experiments in biomineralization such as siliceous spicules and external carbonate shells. Reconstructions of their bauplan reveal forms evolutionarily equipped for a suspensionfeeding lifestyle, well-prepared for pumping seawater through their bodies. As ecosystem engineers that clarified the water column and allowed for greater depths of photosynthetic activity, the emergence (and dominance) of sponge-grade animals in shallow marine carbonate reefs had the potential to drive environmental change that is arguably recorded during extremes in the Neoproterozoic carbon cycle. With their global distribution, these animals would link the planktic and benthic realms for the first time in Earth history and represent a sink for the photosynthetically derived organic matter that impacted the oxidation state of the oceans and atmosphere. Notably, most of these fossils are archived in carbonates preserving global expressions of profoundly negative δ13C perturbations. These include the Ediacaran Period Shuram Excursion, which foreshadowed the widespread appearance of the Ediacara biota, and the terminal Cryogenian Period Trezona Anomaly, which immediately preceded the Marinoan snowball Earth. 
    more » « less
  4. Traxler, Matthew F. (Ed.)
    ABSTRACT Marine sponge holobionts are prolific sources of natural products. One of the most geographically widespread classes of sponge-derived natural products is the bromotyrosine alkaloids. A distinguishing feature of bromotyrosine alkaloids is that they are present in phylogenetically disparate sponges. In this study, using sponge specimens collected from Guam, the Solomon Islands, the Florida Keys, and Puerto Rico, we queried whether the presence of bromotyrosine alkaloids potentiates metabolomic and microbiome conservation among geographically distant and phylogenetically different marine sponges. A multi-omic characterization of sponge holobionts revealed vastly different metabolomic and microbiome architectures among different bromotyrosine alkaloid-harboring sponges. However, we find statistically significant correlations between the microbiomes and metabolomes, signifying that the microbiome plays an important role in shaping the overall metabolome, even in low-microbial-abundance sponges. Molecules mined from the polar metabolomes of these sponges revealed conservation of biosynthetic logic between bromotyrosine alkaloids and brominated pyrrole-imidazole alkaloids, another class of marine sponge-derived natural products. In light of prior findings postulating the sponge host itself to be the biosynthetic source of bromotyrosine alkaloids, our data now set the stage for investigating the causal relationships that dictate the microbiome-metabolome interconnectedness for marine sponges in which the microbiome may not contribute to natural product biogenesis. IMPORTANCE Our work demonstrates that phylogenetically and geographically distant sponges with very different microbiomes can harbor natural product chemical classes that are united in their core chemical structures and biosynthetic logic. Furthermore, we show that independent of geographical dispersion, natural product chemistry, and microbial abundance, overall sponge metabolomes tightly correlate with their microbiomes. 
    more » « less
  5. Abstract The chemical ecology and chemical defenses of sponges have been investigated for decades; consequently, sponges are among the best understood marine organisms in terms of their chemical ecology, from the level of molecules to ecosystems. Thousands of natural products have been isolated and characterized from sponges, and although relatively few of these compounds have been studied for their ecological functions, some are known to serve as chemical defenses against predators, microorganisms, fouling organisms, and other competitors. Sponges are hosts to an exceptional diversity of microorganisms, with almost 40 microbial phyla found in these associations to date. Microbial community composition and abundance are highly variable across host taxa, with a continuum from diverse assemblages of many microbial taxa to those that are dominated by a single microbial group. Microbial communities expand the nutritional repertoire of their hosts by providing access to inorganic and dissolved sources of nutrients. Not only does this continuum of microorganism–sponge associations lead to divergent nutritional characteristics in sponges, these associated microorganisms and symbionts have long been suspected, and are now known, to biosynthesize some of the natural products found in sponges. Modern “omics” tools provide ways to study these sponge–microbe associations that would have been difficult even a decade ago. Metabolomics facilitate comparisons of sponge compounds produced within and among taxa, and metagenomics and metatranscriptomics provide tools to understand the biology of host–microbe associations and the biosynthesis of ecologically relevant natural products. These combinations of ecological, microbiological, metabolomic and genomics tools, and techniques provide unprecedented opportunities to advance sponge biology and chemical ecology across many marine ecosystems. 
    more » « less