Abstract We present the confirmation of TOI-5573 b, a Saturn-sized exoplanet on an 8.79 days orbit around an early M dwarf (3790 K, 0.59R⊙, 0.61M⊙, 12.30 Jmag). TOI-5573 b has a mass of M⊕(0.35 ± 0.06MJup) and a radius of 9.75 ± 0.47R⊕(0.87 ± 0.04RJup), resulting in a density of g cm−3, akin to that of Saturn. The planet was initially discovered by the Transiting Exoplanet Survey Satellite (TESS) and confirmed using a combination of 11 transits from four TESS Sectors (20, 21, 47, and 74), ground-based photometry from the Red Buttes Observatory, and high-precision radial velocity data from the Habitable-zone Planet Finder and NN-EXPLORE Exoplanet Investigations with Doppler spectrographs, achieving a 5σprecision on the planet’s mass. TOI-5573 b is one of the coolest Saturn-like exoplanets discovered around an M-dwarf, with an equilibrium temperature of only 528 ± 10 K, making it a valuable target for atmospheric characterization. Saturn-like exoplanets around M dwarfs likely form through core accretion, with increased disk opacity slowing gas accretion and limiting their mass. The host star’s supersolar metallicity supports core accretion, but uncertainties in M-dwarf metallicity estimates complicate definitive conclusions. Compared to other GEMS (Giant Exoplanets around M-dwarf Stars) orbiting metal-rich stars, TOI-5573 b aligns with the observed pattern that giant planets preferentially form around M-dwarfs with supersolar metallicity. Further high-resolution spectroscopic observations are needed to explore the role of stellar metallicity in shaping the formation and properties of giant exoplanets like TOI-5573 b.
more »
« less
TOI-6478 b: a cold underdense Neptune transiting a fully convective M dwarf from the thick disc
ABSTRACT Growing numbers of exoplanet detections continue to reveal the diverse nature of planetary systems. Planet formation around late-type M dwarfs is of particular interest. These systems provide practical laboratories to measure exoplanet occurrence rates for M dwarfs, thus testing how the outcomes of planet formation scale with host mass, and how they compare to Sun-like stars. Here, we report the discovery of TOI-6478 b, a cold ($$T_{\text{eq}}=204\,$$ K) Neptune-like planet orbiting an M5 star ($$R_\star =0.234\pm 0.012\, \text{R}_\odot$$, $$M_\star =0.230\pm 0.007\, \text{M}_\odot$$, $$T_{\text{eff}}=3230\pm 75\,$$ K) that is a member of the Milky Way’s thick disc. We measure a planet radius of $$R_b=4.6\pm 0.24\, \text{R}_{\oplus }$$ on a $$P_b=34.005019\pm 0.000025\,$$ d orbit. Using radial velocities, we calculate an upper mass limit of $$M_b\le 9.9\, \text{M}_{\oplus }$$ ($$M_b\le 0.6\, \text{M}_{\text{Nep}})$$, with $$3\, \sigma$$ confidence. TOI-6478 b is a milestone planet in the study of cold Neptune-like worlds. Due to its large atmospheric scale height, it is amenable to atmospheric characterization with facilities such as JWST, and will provide an excellent probe of atmospheric chemistry in this cold regime. It is one of very few transiting exoplanets that orbit beyond their system’s ice-line whose atmospheric chemical composition can be measured. Based on our current understanding of this planet, we estimate TOI-6478 b’s spectroscopic features (in transmission) can be $$\sim 2.5\times$$ as high as the widely studied planet K2-18 b.
more »
« less
- Award ID(s):
- 2108465
- PAR ID:
- 10597716
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 540
- Issue:
- 2
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 1909-1927
- Size(s):
- p. 1909-1927
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT High-precision light curves from space-based telescopes and precise astrometry from the Gaia satellite have revolutionized our ability to characterize exoplanet host stars. Asteroseismology has allowed for stellar parameters to be determined to remarkable precision, achieving age uncertainties as low as 10−20 per cent for Sun-like stars. We present an asteroseismic analysis of the naked-eye ($V = 5.78$), G4V star $$\nu ^2$$ Lupi (HD 136352), which hosts three small transiting planets with orbital periods of 11, 27, and 107 d. We used the latest 20-s cadence photometry data from the Transiting Exoplanet Survey Satellite (TESS) to extract stellar oscillations. Comparing these to stellar models, we find that the star has a mass of $$0.83^{+0.04}_{-0.03}$$ (ran) $$\pm 0.07$$ (sys) $$M_\odot$$, a radius of $$1.00^{+0.01}_{-0.02}$$ (ran) $$\pm 0.04$$ (sys) $$R_\odot$$, and an age of $$11.9^{+2.6}_{-1.6}$$ (ran) $$\pm 1.7$$ (sys) Gyr. We also confirm that the star is likely a member of the Galactic thick disc based on its Galactic velocities, consistent with the asteroseismic age. Based on the newly determined stellar parameters, we recalculate the planet parameters. The inner planet has a mass of $$4.55 \pm 0.40$$ $$M_{\oplus }$$ and a radius of $$1.57 \pm 0.04$$ $$R_{\oplus }$$, suggesting the planet is rocky and consisting primarily of silicates without an iron-rich core, consistent with its old age and significant alpha-element enhancement. The two outer planets have masses and radii of $$10.87 \pm 0.62$$ $$M_{\oplus }$$ and $$2.75 \pm 0.06$$ $$R_{\oplus }$$, and $$8.52 \pm 0.90$$ $$M_{\oplus }$$ and $$2.42 \pm 0.08$$ $$R_{\oplus }$$, respectively, suggesting both are sub-Neptune planets with a significant H–He atmosphere.more » « less
-
Abstract Exoplanet discoveries have revealed a dramatic diversity of planet sizes across a vast array of orbital architectures. Sub-Neptunes are of particular interest; due to their absence in our own solar system, we rely on demographics of exoplanets to better understand their bulk composition and formation scenarios. Here, we present the discovery and characterization of TOI-1437 b, a sub-Neptune with a 18.84 day orbit around a near-solar analog (M⋆= 1.10 ± 0.10M☉,R⋆=1.17 ± 0.12R☉). The planet was detected using photometric data from the Transiting Exoplanet Survey Satellite (TESS) mission and radial velocity (RV) follow-up observations were carried out as a part of the TESS-Keck Survey using both the HIRES instrument at Keck Observatory and the Levy Spectrograph on the Automated Planet Finder telescope. A combined analysis of these data reveal a planet radius ofRp= 2.24 ± 0.23R⊕and a mass measurement ofMp= 9.6 ± 3.9M⊕). TOI-1437 b is one of few (∼50) known transiting sub-Neptunes orbiting a solar-mass star that has a RV mass measurement. As the formation pathway of these worlds remains an unanswered question, the precise mass characterization of TOI-1437 b may provide further insight into this class of planet.more » « less
-
ABSTRACT A new generation of observatories is enabling detailed study of exoplanetary atmospheres and the diversity of alien climates, allowing us to seek evidence for extraterrestrial biological and geological processes. Now is therefore the time to identify the most unique planets to be characterized with these instruments. In this context, we report on the discovery and validation of TOI-715 b, a $$R_{\rm b}=1.55\pm 0.06\rm R_{\oplus }$$ planet orbiting its nearby (42 pc) M4 host (TOI-715/TIC 271971130) with a period $$P_{\rm b} = 19.288004_{-0.000024}^{+0.000027}$$ d. TOI-715 b was first identified by TESS and validated using ground-based photometry, high-resolution imaging and statistical validation. The planet’s orbital period combined with the stellar effective temperature $$T_{\rm eff}=3075\pm 75~\rm K$$ give this planet an installation $$S_{\rm b} = 0.67_{-0.20}^{+0.15}~\rm S_\oplus$$, placing it within the most conservative definitions of the habitable zone for rocky planets. TOI-715 b’s radius falls exactly between two measured locations of the M-dwarf radius valley; characterizing its mass and composition will help understand the true nature of the radius valley for low-mass stars. We demonstrate TOI-715 b is amenable for characterization using precise radial velocities and transmission spectroscopy. Additionally, we reveal a second candidate planet in the system, TIC 271971130.02, with a potential orbital period of $$P_{02} = 25.60712_{-0.00036}^{+0.00031}$$ d and a radius of $$R_{02} = 1.066\pm 0.092\, \rm R_{\oplus }$$, just inside the outer boundary of the habitable zone, and near a 4:3 orbital period commensurability. Should this second planet be confirmed, it would represent the smallest habitable zone planet discovered by TESS to date.more » « less
-
The First Spin-Orbit Obliquity of an M dwarf/brown dwarf system: an eccentric and aligned TOI-2119 bABSTRACT We report the first instance of an M dwarf/brown dwarf obliquity measurement for the TOI-2119 system using the Rossiter–McLaughlin effect. TOI-2119 b is a transiting brown dwarf orbiting a young, active early M dwarf ($$T_{\rm {eff}}$$ = 3553 K). It has a mass of 64.4 M$$_{\rm {J}}$$ and radius of 1.08 R$$_{\rm {J}}$$, with an eccentric orbit (e = 0.3) at a period of 7.2 d. For this analysis, we utilize NEID spectroscopic transit observations and ground-based simultaneous transit photometry from the Astrophysical Research Consortium and the Las Campanas Remote Observatory. We fit all available data of TOI-2119 b to refine the brown dwarf parameters and update the ephemeris. The classical Rossiter–McLaughlin technique yields a projected star–planet obliquity of $$\lambda =-0.8\pm 1.1^\circ$$ and a three-dimensional obliquity of $$\psi =15.7\pm 5.5^\circ$$. Additionally, we spatially resolve the stellar surface of TOI-2119 utilizing the Reloaded Rossiter–McLaughlin technique to determine the projected star–planet obliquity as $$\lambda =1.26 \pm 1.3^{\circ }$$. Both of these results agree within $$2\sigma$$ and confirm the system is aligned, where TOI-2119 b joins an emerging group of aligned brown dwarf obliquities. We also probe stellar surface activity on the surface of TOI-2119 in the form of centre-to-limb variations as well as the potential for differential rotation. Overall, we find tentative evidence for centre-to-limb variations on the star but do not detect evidence of differential rotation.more » « less
An official website of the United States government
