Abstract We consider a family of variable time-stepping Dahlquist-Liniger-Nevanlinna (DLN) schemes, which is unconditionally non-linear stable and second order accurate, for the Allen-Cahn equation. The finite element methods are used for the spatial discretization. For the non-linear term, we combine the DLN scheme with two efficient temporal algorithms: partially implicit modified algorithm and scalar auxiliary variable algorithm. For both approaches, we prove the unconditional, long-term stability of the model energy under any arbitrary time step sequence. Moreover, we provide rigorous error analysis for the partially implicit modified algorithm with variable time-stepping. Efficient time-adaptive algorithms based on these schemes are also proposed. Several one- and two-dimensional numerical tests are presented to verify the properties of the proposed time-adaptive DLN methods.
more »
« less
This content will become publicly available on January 1, 2026
High-order accurate implicit-explicit time-stepping schemes for wave equations on overset grids
New implicit and implicit-explicit time-stepping methods for the wave equation in second-order form are described with application to two and three-dimensional problems discretized on overset grids. The implicit schemes are single step, three levels in time, and based on the modified equation approach. Second and fourth-order accurate schemes are developed and they incorporate upwind dissipation for stability on overset grids. The fully implicit schemes are useful for certain applications such as the WaveHoltz algorithm for solving Helmholtz problems where very large time-steps are desired. Some wave propagation problems are geometrically stiff due to localized regions of small grid cells, such as grids needed to resolve fine geometric features, and for these situations the implicit time-stepping scheme is combined with an explicit scheme: the implicit scheme is used for component grids containing small cells while the explicit scheme is used on the other grids such as background Cartesian grids. The resulting partitioned implicit-explicit scheme can be many times faster than using an explicit scheme everywhere. The accuracy and stability of the schemes are studied through analysis and numerical computations.
more »
« less
- PAR ID:
- 10597967
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Computational Physics
- Volume:
- 520
- Issue:
- C
- ISSN:
- 0021-9991
- Page Range / eLocation ID:
- 113513
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Unconditionally stable time stepping schemes are useful and often practically necessary for advancing parabolic operators in multi-scale systems. However, serious accuracy problems may emerge when taking time steps that far exceed the explicit stability limits. In our previous work, we compared the accuracy and performance of advancing parabolic operators in a thermodynamic MHD model using an implicit method and an explicit super time-stepping (STS) method. We found that while the STS method outperformed the implicit one with overall good results, it was not able to damp oscillatory behavior in the solution efficiently, hindering its practical use. In this follow-up work, we evaluate an easy-to-implement method for selecting a practical time step limit (PTL) for unconditionally stable schemes. This time step is used to ‘cycle’ the operator-split thermal conduction and viscosity parabolic operators. We test the new time step with both an implicit and STS scheme for accuracy, performance, and scaling. We find that, for our test cases here, the PTL dramatically improves the STS solution, matching or improving the solution of the original implicit scheme, while retaining most of its performance and scaling advantages. The PTL shows promise to allow more accurate use of unconditionally stable schemes for parabolic operators and reliable use of STS methods.more » « less
-
We consider high-order discretizations of a Cauchy problem where the evolution operator comprises a hyperbolic part and a parabolic part with diffusion and stiff relaxation terms. We propose a technique that makes every implicit-explicit (IMEX) time stepping scheme invariant-domain preserving and mass conservative. Following the ideas introduced in Part I on explicit Runge--Kutta schemes, the IMEX scheme is written in incremental form. At each stage, we first combine a low-order and a high-order hyperbolic update using a limiting operator, then we combine a low-order and a high-order parabolic update using another limiting operator. The proposed technique, which is agnostic to the space discretization, allows one to optimize the time step restrictions induced by the hyperbolic substep. To illustrate the proposed methodology, we derive four novel IMEX methods with optimal efficiency. All the implicit schemes are singly diagonal. One of them is A-stable and the other three are L-stable. The novel IMEX schemes are evaluated numerically on systems of stiff ordinary differential equations and nonlinear conservation equations.more » « less
-
Abstract In this work we introduce semi-implicit or implicit finite difference schemes for the continuity equation with a gradient flow structure. Examples of such equations include the linear Fokker–Planck equation and the Keller–Segel equations. The two proposed schemes are first-order accurate in time, explicitly solvable, and second-order and fourth-order accurate in space, which are obtained via finite difference implementation of the classical continuous finite element method. The fully discrete schemes are proved to be positivity preserving and energy dissipative: the second-order scheme can achieve so unconditionally while the fourth-order scheme only requires a mild time step and mesh size constraint. In particular, the fourth-order scheme is the first high order spatial discretization that can achieve both positivity and energy decay properties, which is suitable for long time simulation and to obtain accurate steady state solutions.more » « less
-
Abstract This article presents high order accurate discontinuous Galerkin (DG) methods for wave problems on moving curved meshes with general choices of basis and quadrature. The proposed method adopts an arbitrary Lagrangian–Eulerian formulation to map the wave equation from a time‐dependent moving physical domain onto a fixed reference domain. For moving curved meshes, weighted mass matrices must be assembled and inverted at each time step when using explicit time‐stepping methods. We avoid this step by utilizing an easily invertible weight‐adjusted approximation. The resulting semi‐discrete weight‐adjusted DG scheme is provably energy stable up to a term that (for a fixed time interval) converges to zero with the same rate as the optimal error estimate. Numerical experiments using both polynomial and B‐spline bases verify the high order accuracy and energy stability of proposed methods.more » « less
An official website of the United States government
