The Drosophila kikkawai feature with NCBI Gene ID 108084518 was determined to be an ortholog of Drosophila melanogaster Sox102F, a member of the FlyBase High Mobility Group Box Transcription Factors gene group (FBgg0000748). Five isoforms were constructed using the GEP F element annotation protocol, the longest being novel isoform Sox102F-PNE (identified using the XM_017180752 RefSeq prediction and RNA-seq data). Among the isoforms found in both D. melanogaster and D. kikkawai, Sox102F-PB is the longest and exhibits a 1.18x coding span expansion due to transposable element insertion into an intron. All D. kikkawai protein isoforms contain the conserved domain HMG_box_dom (IPR009071).
more »
« less
Drosophila kikkawai ortholog of the D. melanogaster Muller D element ash1
The Drosophila kikkawai feature with Gene ID 108083276 was determined to be an ortholog of Drosophila melanogaster absent, small, or homeotic discs 1 (ash1). Two isoforms, ash1-PB and ash1-PC, were constructed on the D. kikkawai Muller D element using the GEP annotation protocol. The second coding exon of D. kikkawai ash1 includes an insertion translated into 18 additional amino acids compared to the D. melanogaster protein and is supported by RNA-Seq coverage, the lack of splice junction predictions, and multiple gene predictors. The first intron in both isoforms of D. kikkawai ash1 contains a well conserved non-canonical GC splice site.
more »
« less
- Award ID(s):
- 2114661
- PAR ID:
- 10598073
- Publisher / Repository:
- microPublication Biology
- Date Published:
- Journal Name:
- microPublication biology
- Volume:
- 2024
- ISSN:
- 2578-9430
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The diversity among Drosophila species presents an opportunity to study the molecular mechanisms underlying the evolution of biological phenomena. A challenge to investigating these species is that, unlike the plethora of molecular and genetics tools available for D. melanogaster research, many other species do not have sequenced genomes; a requirement for employing these tools. Selecting transgenic flies through white (w) complementation has been commonly practiced in numerous Drosophila species. While tolerated, the disruption of w is associated with impaired vision, among other effects in D. melanogaster. The D. nebulosa fly has a unique mating behavior which requires vision, and is thus unable to successfully mate in dark conditions. Here, we hypothesized that the disruption of w will impede mating success. As a first step, using PacBio long-read sequencing, we assembled a high-quality annotated genome of D. nebulosa. Using these data, we employed CRISPR/Cas9 to successfully disrupt the w gene. As expected, D. nebulosa males null for w did not court females, unlike several other mutant strains of Drosophila species whose w gene has been disrupted. In the absence of mating, no females became homozygous null for w. We conclude that gene disruption via CRISPR/Cas9 genome engineering is a successful tool in D. nebulosa, and that the w gene is necessary for mating. Thus, an alternative selectable marker unrelated to vision is desirable.more » « less
-
Genetic screens in Drosophila melanogaster have long been used to identify genes found in a variety of developmental, cellular, and behavioral processes. Here we describe the characterization and mapping of a mutation identified in a conditional screen for genetic regulators of cell growth and cell division. Within a Flp/FRT system, mutant G.3.2 results in a reduction of mutant tissue and a rough eye phenotype. We find that G.3.2 maps to the gene cnk, providing further support that cnk is a critical gene in Drosophila eye development. This mutant was characterized, mapped and sequenced by undergraduate students within the Fly-CURE consortium.more » « less
-
Jaramillo-Lambert, Aimee (Ed.)Meiotic recombination plays an important role in ensuring proper chromosome segregation during meiosis I through the creation of chiasmata that connect homologous chromosomes. Recombination plays an additional role in evolution by creating new allelic combinations. Organisms display species-specific crossover patterns, but how these patterns are established is poorly understood.Drosophila mauritianadisplays a different meiotic recombination pattern compared toDrosophila melanogaster, withD. mauritianaexperiencing a reduced centromere effect, the suppression of recombination emanating from the centromeres. To evaluate the contribution of the synaptonemal complex (SC) C(3)G protein to these recombination rate differences, theD. melanogasterallele was replaced withD. mauritiana c(3)Gcoding sequence. We found that theD. mauritianaC(3)G could interact with theD. melanogasterSC machinery to build full length tripartite SC and chromosomes segregated accurately, indicating sufficient crossovers were generated. However, the placement of crossovers was altered, displaying an increase in frequency in the centromere-proximal euchromatin indicating a decrease in the centromere effect, similar to that observed inD. mauritianafemales. Recovery of chromatids with more than one crossover was also increased, likely due to the larger chromosome span now available for crossovers. As replacement of a single gene mediated a strong shift of one species’ crossover pattern towards another species, it indicates a small number of discrete factors may have major influence on species-specific crossover patterning. Additionally, it demonstrates the SC, a structure known to be required for crossover formation in many species, is likely one of these discrete factors.more » « less
-
Abstract While spermatogenesis has been extensively characterized in the Drosophila melanogaster model system, very little is known about the genes required for fly sperm entry into eggs. We identified a lineage-specific gene, which we named katherine johnson (kj), that is required for efficient fertilization. Males that do not express kj produce and transfer sperm that are stored normally in females, but sperm from these males enter eggs with severely reduced efficiency. Using a tagged transgenic rescue construct, we observed that the KJ protein localizes around the edge of the nucleus at various stages of spermatogenesis but is undetectable in mature sperm. These data suggest that kj exerts an effect on sperm development, the loss of which results in reduced fertilization ability. Interestingly, KJ protein lacks detectable sequence similarity to any other known protein, suggesting that kj could be a lineage-specific orphan gene. While previous bioinformatic analyses indicated that kj was restricted to the melanogaster group of Drosophila, we identified putative orthologs with conserved synteny, male-biased expression, and predicted protein features across the genus, as well as likely instances of gene loss in some lineages. Thus, kj was likely present in the Drosophila common ancestor. It is unclear whether its role in fertility had already evolved at that time or developed later in the lineage leading to D. melanogaster. Our results demonstrate a new aspect of male reproduction that has been shaped by a lineage-specific gene and provide a molecular foothold for further investigating the mechanism of sperm entry into eggs in Drosophila.more » « less
An official website of the United States government
