skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 31, 2026

Title: Class-Imbalanced Learning on Graphs: A Survey
Rapid advancement in machine learning is increasing the demand for effective graph data analysis. However, real-world graph data often exhibits class imbalance, leading to poor performance of standard machine learning models on underrepresented classes. To address this,Class-ImbalancedLearning onGraphs (CILG) has emerged as a promising solution that combines graph representation learning and class-imbalanced learning. This survey provides a comprehensive understanding of CILG’s current state-of-the-art, establishing the first systematic taxonomy of existing work and its connections to traditional imbalanced learning. We critically analyze recent advances and discuss key open problems. A continuously updated reading list of relevant articles and code implementations is available athttps://github.com/yihongma/CILG-Papers.  more » « less
Award ID(s):
2202693
PAR ID:
10598431
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Association for Computing Machinery
Date Published:
Journal Name:
ACM Computing Surveys
Volume:
57
Issue:
8
ISSN:
0360-0300
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recommending products to users with intuitive explanations helps improve the system in transparency, persuasiveness, and satisfaction. Existing interpretation techniques include post-hoc methods and interpretable modeling. The former category could quantitatively analyze input contribution to model prediction but has limited interpretation faithfulness, while the latter could explain model internal mechanisms but may not directly attribute model predictions to input features. In this study, we propose a novelDualInterpretableRecommendation model called DIRECT, which integrates ideas of the two interpretation categories to inherit their advantages and avoid limitations. Specifically, DIRECT makes use of item descriptions as explainable evidence for recommendation. First, similar to the post-hoc interpretation, DIRECT could attribute the prediction of a user preference score to textual words of the item descriptions. The attribution of each word is related to its sentiment polarity and word importance, where a word is important if it corresponds to an item aspect that the user is interested in. Second, to improve the interpretability of embedding space, we propose to extract high-level concepts from embeddings, where each concept corresponds to an item aspect. To learn discriminative concepts, we employ a concept-bottleneck layer, and maximize the coding rate reduction on word-aspect embeddings by leveraging a word-word affinity graph extracted from a pre-trained language model. In this way, DIRECT simultaneously achieves faithful attribution and usable interpretation of embedding space. We also show that DIRECT achieves linear inference time complexity regarding the length of item reviews. We conduct experiments including ablation studies on five real-world datasets. Quantitative analysis, visualizations, and case studies verify the interpretability of DIRECT. Our code is available at:https://github.com/JacksonWuxs/DIRECT. 
    more » « less
  2. Guillot, Gilles (Ed.)
    Diagnostic and prognostic models are increasingly important in medicine and inform many clinical decisions. Recently, machine learning approaches have shown improvement over conventional modeling techniques by better capturing complex interactions between patient covariates in a data-driven manner. However, the use of machine learning introduces technical and practical challenges that have thus far restricted widespread adoption of such techniques in clinical settings. To address these challenges and empower healthcare professionals, we present an open-source machine learning framework, AutoPrognosis 2.0, to facilitate the development of diagnostic and prognostic models. AutoPrognosis leverages state-of-the-art advances in automated machine learning to develop optimized machine learning pipelines, incorporates model explainability tools, and enables deployment of clinical demonstrators,withoutrequiring significant technical expertise. To demonstrate AutoPrognosis 2.0, we provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank, a prospective study of 502,467 individuals. The models produced by our automated framework achieve greater discrimination for diabetes than expert clinical risk scores. We have implemented our risk score as a web-based decision support tool, which can be publicly accessed by patients and clinicians. By open-sourcing our framework as a tool for the community, we aim to provide clinicians and other medical practitioners with an accessible resource to develop new risk scores, personalized diagnostics, and prognostics using machine learning techniques. Software:https://github.com/vanderschaarlab/AutoPrognosis 
    more » « less
  3. Multivariate time-series data are frequently observed in critical care settings and are typically characterized by sparsity (missing information) and irregular time intervals. Existing approaches for learning representations in this domain handle these challenges by either aggregation or imputation of values, which in-turn suppresses the fine-grained information and adds undesirable noise/overhead into the machine learning model. To tackle this problem, we propose aSelf-supervisedTransformer forTime-Series (STraTS) model, which overcomes these pitfalls by treating time-series as a set of observation triplets instead of using the standard dense matrix representation. It employs a novel Continuous Value Embedding technique to encode continuous time and variable values without the need for discretization. It is composed of a Transformer component with multi-head attention layers, which enable it to learn contextual triplet embeddings while avoiding the problems of recurrence and vanishing gradients that occur in recurrent architectures. In addition, to tackle the problem of limited availability of labeled data (which is typically observed in many healthcare applications), STraTS utilizes self-supervision by leveraging unlabeled data to learn better representations by using time-series forecasting as an auxiliary proxy task. Experiments on real-world multivariate clinical time-series benchmark datasets demonstrate that STraTS has better prediction performance than state-of-the-art methods for mortality prediction, especially when labeled data is limited. Finally, we also present an interpretable version of STraTS, which can identify important measurements in the time-series data. Our data preprocessing and model implementation codes are available athttps://github.com/sindhura97/STraTS. 
    more » « less
  4. Abstract The fast simulation of dynamical systems is a key challenge in many scientific and engineering applications, such as weather forecasting, disease control, and drug discovery. With the recent success of deep learning, there is increasing interest in using neural networks to solve differential equations in a data‐driven manner. However, existing methods are either limited to specific types of differential equations or require large amounts of data for training. This restricts their practicality in many real‐world applications, where data is often scarce or expensive to obtain. To address this, a novel multi‐modal foundation model, namedFMint(FoundationModel based onInitialization) is proposed, to bridge the gap between human‐designed and data‐driven models for the fast simulation of dynamical systems. Built on a decoder‐only transformer architecture with in‐context learning, FMint utilizes both numerical and textual data to learn a universal error correction scheme for dynamical systems, using prompted sequences of coarse solutions from traditional solvers. The model is pre‐trained on a corpus of 400K ordinary differential equations (ODEs), and extensive experiments are performed on challenging ODEs that exhibit chaotic behavior and of high dimensionality. The results demonstrate the effectiveness of the proposed model in terms of both accuracy and efficiency compared to classical numerical solvers, highlighting FMint's potential as a general‐purpose solver for dynamical systems. This approach achieves an accuracy improvement of 1 to 2 orders of magnitude over state‐of‐the‐art dynamical system simulators, and delivers a 5X speedup compared to traditional numerical algorithms. The code for FMint is available athttps://github.com/margotyjx/FMint. 
    more » « less
  5. Abstract <bold>Background</bold>Existing software for comparison of species delimitation models do not provide a (true) metric or distance functions between species delimitation models, nor a way to compare these models in terms of relative clustering differences along a lattice of partitions. <bold>Results</bold>is a Python package for analyzing and visualizing species delimitation models in an information theoretic framework that, in addition to classic measures of information such as the entropy and mutual information [1], provides for the calculation of the Variation of Information (VI) criterion [2], a true metric or distance function for species delimitation models that is aligned with the lattice of partitions. <bold>Conclusions</bold>is available under the MIT license from its public repository (https://github.com/jeetsukumaran/piikun), and can be installed locally using the Python package manager ‘pip‘. 
    more » « less