Abstract Many of the details of how terrestrial gamma‐ray flashes (TGFs) are produced, including their association with upward‐propagating in‐cloud lightning leader channels, remain poorly understood. Measurements of the low‐frequency radio emissions associated with TGF production continue to provide unique views and key insights into the electrodynamics of this process. Here we report further details on the connection between energetic in‐cloud pulses (EIPs) and TGFs. With coordinated measurements from both ground‐based radio sensors and space‐based gamma‐ray detectors on the Fermi and Reuven Ramaty High Energy Solar Spectroscopic Imager spacecraft, we find that all ten +EIPs that occurred within the searched space‐and‐time window are associated with simultaneous TGFs, including two new TGFs that were not previously identified by the gamma‐ray measurements alone. The results in this study not only solidify the tight connection between +EIPs and TGFs, but also demonstrate the practicability of detecting a subpopulation of TGFs with ground‐based radio sensors alone.
more »
« less
This content will become publicly available on April 1, 2026
Optical Emissions Associated with Terrestrial Gamma-ray and Lightning Flashes at the Telescope Array Detector.
Abstract Terrestrial Gamma-ray Flashes (TGFs) are intense bursts of gamma rays originating from the Earth’s atmosphere, primarily produced by lightning flashes through relativistic runaway electron avalanches. Observations from the Telescope Array in Utah, equipped with a variety of lightning detection instruments, have revealed detailed insights into TGF initiation and propagation, including their optical emissions. High-speed video cameras and spectroscopic systems have captured optical emissions linked to TGFs, revealing key insights into their initiation and propagation. These findings enhance our understanding of the complex processes underlying TGFs and lightning flashes during thunderstorms.
more »
« less
- Award ID(s):
- 2112709
- PAR ID:
- 10598468
- Publisher / Repository:
- R. Abbasi et al 2025 J. Phys.: Conf. Ser. 2985 012012
- Date Published:
- Journal Name:
- Journal of Physics: Conference Series
- Volume:
- 2985
- Issue:
- 1
- ISSN:
- 1742-6588
- Page Range / eLocation ID:
- 012012
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Optical emissions associated with Terrestrial Gamma ray Flashes (TGFs) have recently become important subjects in space‐based and ground‐based observations as they can help us understand how TGFs are produced during thunderstorms. In this paper, we present the first time‐resolved leader spectra of the optical component associated with a downward TGF. The TGF was observed by the Telescope Array Surface Detector (TASD) simultaneously with other lightning detectors, including a Lightning Mapping Array (LMA), an INTerFerometer (INTF), a Fast Antenna (FA), and a spectroscopic system. The spectroscopic system recorded leader spectra at 29,900 frames per second (33.44 s time resolution), covering a spectral range from 400 to 900 nm, with 2.1 nm per pixel. The recordings of the leader spectra began 11.7 ms before the kA return stroke and at a height of 2.37 km above the ground. These spectra reveal that optical emissions of singly ionized nitrogen and oxygen occur between 167 s before and 267 s after the TGF detection, while optical emissions of neutrals (H I, 656 nm; N I, 744 nm, and O I, 777 nm) occur right at the moment of the detection. The time‐dependent spectra reveal differences in the optical emissions of lightning leaders with and without downward TGFs.more » « less
-
Abstract Terrestrial gamma ray flashes (TGFs) are high‐energy photon bursts that have been linked to short bursts of electromagnetic radiation associated with lightning activity. The most puzzling unexplained aspect of these events is that gamma rays originate from very compact regions of space while the source regions often seem to be optically dim and radio silent when compared to processes in ordinary lightning discharges. In this work, we report a mechanism that allows precise quantitative explanation of these peculiar features of TGFs and their relationships to the observed waveform characteristics of associated radio emissions. The mechanism represents an extension of earlier ideas on feedback processes in growth of relativistic runaway electron avalanches (Dwyer, 2003,https://doi.org/10.1029/2003GL017781), and is based on a recent demonstration of the dominant role of the photoelectric feedback on compact spatial scales (Pasko, Celestin, et al., 2023,https://doi.org/10.1029/2022GL102710). Since discussed events often occur in isolation or precede formation of lightning discharges, the reported findings propose a straightforward solution for the long‐standing problem of lightning initiation.more » « less
-
Abstract On 11 September 2021, two small thunderstorms developed over the Telescope Array Surface Detector (TASD) that produced an unprecedented number of six downward terrestrial gamma ray flashes (TGFs) within one‐hour timeframe. The TGFs occurred during the initial stage of negative cloud‐to‐ground flashes whose return strokes had increasingly large peak currents up to 223 kA, 147 GeV energy deposit in up to 25 1.2 km‐spaced surface detectors, and intermittent bursts of gamma‐rays with total durations up to 717 s. The analyses are based on observations recorded by the TASD network, complemented by data from a 3D lightning mapping array, broadband VHF interferometer, fast electric field change sensor, high‐speed video camera, and the National Lightning Detection Network. The TGFs of the final two flashes had gamma fluences of and 8, logarithmically bridging the gap between previous TASD and satellite‐based detections. The observations further emphasize the similarity between upward and downward TGF varieties, suggesting a common mechanism for their production.more » « less
-
Abstract Terrestrial Gamma‐ray Flashes (TGFs) are ten‐to‐hundreds of microsecond bursts of gamma‐rays produced when electrons in strong electric fields in thunderclouds are accelerated to relativistic energies. Space instruments have observed TGFs with source photon brightness down to ∼1017–1016. Based on space and aircraft observations, TGFs have been considered rare phenomena produced in association with very few lightning discharges. Space observations associated with lightning ground observations in the radio band have indicated that there exists a population of dimmer TGFs. Here we show observations of TGFs from aircraft altitude that were not detected by a space instrument viewing the same area. The TGFs were found through Monte Carlo modeling to be associated with 1015–1012photons at source, which is several orders of magnitude below what can be seen from space. Our results suggest that there exists a significant population of TGFs that are too weak to be observed from space.more » « less
An official website of the United States government
