The programming language Julia is designed to solve the 'two language problem', where developers who write scientific software can achieve desired performance, without sacrificing productivity. Since its inception in 2012, developers who have been using other programming languages have transitioned to Julia. A systematic investigation of the questions that developers ask about Julia can help in understanding the challenges that developers face while using Julia. Such understanding can be helpful (i) for toolsmiths who can construct tools so that developers can maximize their experience of using Julia, and (ii) for Julia language maintainers with empirical evidence on areas to improve the language as well as the Julia ecosystem. We conduct an empirical study with 3,093 Stack Overflow posts where we identify 13 categories of questions related to Julia-based software development. We observe developers to ask about a diverse set of topics, such as GC, Julia's garbage collector, JuMP, a domain-specific language constructed using Julia, and symbols, a metaprogramming utility in Julia. Based on our emerging results, we recommend enhancing support for developers with Julia-based tools and techniques for cross language transfer, type-related assistance, and package resolution.
more »
« less
This content will become publicly available on March 1, 2026
How do developers use type inference: an exploratory study in Kotlin
Statically typed languages offer numerous benefits to developers, such as improved code quality and reduced runtime errors, but they also require the overhead of manual type annotations. To mitigate this burden, language designers have started incorporating support for type inference, where the compiler infers the type of a variable based on its declaration/usage context. As a result, type annotations are optional in certain contexts, and developers are empowered to use type inference in these situations. However, the usage patterns of type annotations in languages that support type inference are unclear. These patterns can help provide evidence for further research in program comprehension, in language design, and for education. We conduct a large-scale empirical study using Boa, a tool for mining software repositories, to investigate when and where developers use type inference in 498,963 Kotlin projects. We choose Kotlin because it is the default language for Android development, one of the largest software marketplaces. Additionally, Kotlin has supported declaration-site optional type annotations from its initial release. Our findings reveal that type inference is frequently employed for local variables and variables initialized with method calls declared outside the file are more likely to use type inference. These results have significant implications for language designers, providing valuable insight into where to allow type inference and how to optimize type inference algorithms for maximum efficiency, ultimately improving the development experience for developers.
more »
« less
- Award ID(s):
- 2346327
- PAR ID:
- 10598473
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Empirical Software Engineering
- Volume:
- 30
- Issue:
- 2
- ISSN:
- 1382-3256
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modern software development requires developers to find and effectively utilize new APIs and their documentation, but documentation has many well-known issues. Despite this, developers eventually overcome these issues but have no way of sharing what they learned. We investigate sharing this documentation-specific information through annotations, which have advantages over developer forums as the information is contextualized, not disruptive, and is short, thus easy to author. Developers can also author annotations to support their own comprehension. In order to support the documentation usage behaviors we found, we built the Adamite annotation tool, which provides features such as multiple anchors, annotation types, and pinning. In our user study, we found that developers are able to create annotations that are useful to themselves and are able to utilize annotations created by other developers when learning a new API, with readers of the annotations completing 67% more of the task, on average, than the baseline.more » « less
-
The work of Fuzz has pioneered the use of functional programming languages where types allow reasoning about the sensitivity of programs. Fuzz and subsequent work (e.g., DFuzz and Duet) use advanced technical devices like linear types, modal types, and partial evaluation. These features usually require the design of a new programming language from scratch—a significant task on its own! While these features are part of the classical toolbox of programming languages, they are often unfamiliar to non-experts in this field. Fortunately, recent studies (e.g., Solo) have shown that linear and complex types in general, are not strictly needed for the task of determining programs’ sensitivity since this can be achieved by annotating base types with static sensitivity information. In this work, we take a different approach. We propose to enrich base types with information about the metric relation between values, and we present the novel idea of applyingparametricityto derive direct proofs for the sensitivity of functions. A direct consequence of our result is thatcalculating and provingthe sensitivity of functions is reduced to simply type-checking in a programming language with support for polymorphism and type-level naturals. We formalize our main result in a calculus, prove its soundness, and implement a software library in the programming language Haskell–where we reason about the sensitivity of canonical examples. We show that the simplicity of our approach allows us to exploit the type inference of the host language to support a limited form of sensitivity inference. Furthermore, we extend the language with a privacy monad to showcase how our library can be used in practical scenarios such as the implementation of differentially private programs, where the privacy guarantees depend on the sensitivity of user-defined functions. Our library, called Spar, is implemented in less than 500 lines of code.more » « less
-
Developers nowadays regularly use numerous programming languages with different characteristics and trade-offs. Unfortunately, implementing a software verifier for a new language from scratch is a large and tedious undertaking, requiring expert knowledge in multiple domains, such as compilers, verification, and constraint solving. Hence, only a tiny fraction of the used languages has readily available software verifiers to aid in the development of correct programs. In the past decade, there has been a trend of leveraging popular compiler intermediate representations (IRs), such as LLVM IR, when implementing software verifiers. Processing IR promises out-of-the-box multi- and cross-language verification since, at least in theory, a verifier ought to be able to handle a program in any programming language (and their combination) that can be compiled into the IR. In practice though, to the best of our knowledge, nobody has explored the feasibility and ease of such integration of new languages. In this paper, we provide a procedure for adding support for a new language into an IR-based verification toolflow. Using our procedure, we extend the SMACK verifier with prototypical support for 6 additional languages. We assess the quality of our extensions through several case studies, and we describe our experience in detail to guide future efforts in this area.more » « less
-
For many years now, modern software is known to be developed in multiple languages (hence termed asmultilingualormulti-languagesoftware). Yet, to date, we still only have very limited knowledge about how multilingual software systems are constructed. For instance, it is not yet really clear how different languages are used, selected together, and why they have been so in multilingual software development. Given the fact that using multiple languages in a single software project has become a norm, understanding language use and selection (i.e.,language profile) as a basic element of themultilingual constructionin contemporary software engineering is an essential first step. In this article, we set out to fill this gap with a large-scale characterization study on language use and selection in open-source multilingual software. We start with presentingan updated overviewof language use in 7,113 GitHub projects spanning the 5 past years by characterizing overall statistics of language profiles, followed bya deeper lookinto the functionality relevance/justification of language selection in these projects through association rule mining. We proceed with an evolutionary characterization of 1,000 GitHub projects for each of the 10 past years to providea longitudinal viewof how language use and selection have changed over the years, as well as how the association between functionality and language selection has been evolving. Among many other findings, our study revealed a growing trend of using three to five languages in one multilingual software project and the noticeable stableness of top language selections. We found a non-trivial association between language selection and certain functionality domains, which was less stable than that with individual languages over time. In a historical context, we also have observed major shifts in these characteristics of multilingual systems both in contrast to earlier peer studies and along the evolutionary timeline. Our findings offer essential knowledge on the multilingual construction in modern software development. Based on our results, we also provide insights and actionable suggestions for both researchers and developers of multilingual systems.more » « less
An official website of the United States government
