Abstract Heterogeneity is a hallmark of cancer, diabetes, cardiovascular diseases, and many other complex diseases. This study has been partly motivated by the unsupervised heterogeneity analysis for complex diseases based on molecular and imaging data, for which, network‐based analysis, by accommodating the interconnections among variables, can be more informative than that limited to mean, variance, and other simple distributional properties. In the literature, there has been very limited research on network‐based heterogeneity analysis, and a common limitation shared by the existing techniques is that the number of subgroups needs to be specified a priori or in an ad hoc manner. In this article, we develop a penalized fusion approach for heterogeneity analysis based on the Gaussian graphical model. It applies penalization to the mean and precision matrix parameters to generate regularized and interpretable estimates. More importantly, a fusion penalty is imposed to “automatedly” determine the number of subgroups and generate more concise, reliable, and interpretable estimation. Consistency properties are rigorously established, and an effective computational algorithm is developed. The heterogeneity analysis of non‐small‐cell lung cancer based on single‐cell gene expression data of the Wnt pathway and that of lung adenocarcinoma based on histopathological imaging data not only demonstrate the practical applicability of the proposed approach but also lead to interesting new findings. 
                        more » 
                        « less   
                    This content will become publicly available on December 31, 2025
                            
                            Incorporating prior information in gene expression network-based cancer heterogeneity analysis
                        
                    
    
            Summary Cancer is molecularly heterogeneous, with seemingly similar patients having different molecular landscapes and accordingly different clinical behaviors. In recent studies, gene expression networks have been shown as more effective/informative for cancer heterogeneity analysis than some simpler measures. Gene interconnections can be classified as “direct” and “indirect,” where the latter can be caused by shared genomic regulators (such as transcription factors, microRNAs, and other regulatory molecules) and other mechanisms. It has been suggested that incorporating the regulators of gene expressions in network analysis and focusing on the direct interconnections can lead to a deeper understanding of the more essential gene interconnections. Such analysis can be seriously challenged by the large number of parameters (jointly caused by network analysis, incorporation of regulators, and heterogeneity) and often weak signals. To effectively tackle this problem, we propose incorporating prior information contained in the published literature. A key challenge is that such prior information can be partial or even wrong. We develop a two-step procedure that can flexibly accommodate different levels of prior information quality. Simulation demonstrates the effectiveness of the proposed approach and its superiority over relevant competitors. In the analysis of a breast cancer dataset, findings different from the alternatives are made, and the identified sample subgroups have important clinical differences. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2209685
- PAR ID:
- 10598512
- Publisher / Repository:
- Oxford University
- Date Published:
- Journal Name:
- Biostatistics
- Volume:
- 26
- Issue:
- 1
- ISSN:
- 1468-4357
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)In the study of gene expression data, network analysis has played a uniquely important role. To accommodate the high dimensionality and low sample size and generate interpretable results, regularized estimation is usually conducted in the construction of gene expression Gaussian Graphical Models (GGM). Here we use GeO‐GGM to represent gene‐expression‐only GGM. Gene expressions are regulated by regulators. gene‐expression‐regulator GGMs (GeR‐GGMs), which accommodate gene expressions as well as their regulators, have been constructed accordingly. In practical data analysis, with a “lack of information” caused by the large number of model parameters, limited sample size, and weak signals, the construction of both GeO‐GGMs and GeR‐GGMs is often unsatisfactory. In this article, we recognize that with the regulation between gene expressions and regulators, the sparsity structures of a GeO‐GGM and its GeR‐GGM counterpart can satisfy a hierarchy. Accordingly, we propose a joint estimation which reinforces the hierarchical structure and use the construction of a GeO‐GGM to assist that of its GeR‐GGM counterpart and vice versa. Consistency properties are rigorously established, and an effective computational algorithm is developed. In simulation, the assisted construction outperforms the separation construction of GeO‐GGM and GeR‐GGM. Two The Cancer Genome Atlas data sets are analyzed, leading to findings different from the direct competitors.more » « less
- 
            null (Ed.)Heterogeneity is a hallmark of cancer. For various cancer outcomes/phenotypes, supervised heterogeneity analysis has been conducted, leading to a deeper understanding of disease biology and customized clinical decisions. In the literature, such analysis has been oftentimes based on demographic, clinical, and omics measurements. Recent studies have shown that high-dimensional histopathological imaging features contain valuable information on cancer outcomes. However, comparatively, heterogeneity analysis based on imaging features has been very limited. In this article, we conduct supervised cancer heterogeneity analysis using histopathological imaging features. The penalized fusion technique, which has notable advantages-such as greater flexibility-over the finite mixture modeling and other techniques, is adopted. A sparse penalization is further imposed to accommodate high dimensionality and select relevant imaging features. To improve computational feasibility and generate more reliable estimation, we employ model averaging. Computational and statistical properties of the proposed approach are carefully investigated. Simulation demonstrates its favorable performance. The analysis of The Cancer Genome Atlas (TCGA) data may provide a new way of defining/examining breast cancer heterogeneity.more » « less
- 
            Wren, Jonathan (Ed.)Abstract Summary Heterogeneity is a hallmark of many complex human diseases, and unsupervised heterogeneity analysis has been extensively conducted using high-throughput molecular measurements and histopathological imaging features. ‘Classic’ heterogeneity analysis has been based on simple statistics such as mean, variance and correlation. Network-based analysis takes interconnections as well as individual variable properties into consideration and can be more informative. Several Gaussian graphical model (GGM)-based heterogeneity analysis techniques have been developed, but friendly and portable software is still lacking. To facilitate more extensive usage, we develop the R package HeteroGGM, which conducts GGM-based heterogeneity analysis using the advanced penaliztaion techniques, can provide informative summary and graphical presentation, and is efficient and friendly. Availabilityand implementation The package is available at https://CRAN.R-project.org/package=HeteroGGM. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
- 
            Cancer heterogeneity analysis is essential for precision medicine. Most of the existing heterogeneity analyses only consider a single type of data and ignore the possible sparsity of important features. In cancer clinical practice, it has been suggested that two types of data, pathological imaging and omics data, are commonly collected and can produce hierarchical heterogeneous structures, in which the refined sub‐subgroup structure determined by omics features can be nested in the rough subgroup structure determined by the imaging features. Moreover, sparsity pursuit has extraordinary significance and is more challenging for heterogeneity analysis, because the important features may not be the same in different subgroups, which is ignored by the existing heterogeneity analyses. Fortunately, rich information from previous literature (for example, those deposited in PubMed) can be used to assist feature selection in the present study. Advancing from the existing analyses, in this study, we propose a novel sparse hierarchical heterogeneity analysis framework, which can integrate two types of features and incorporate prior knowledge to improve feature selection. The proposed approach has satisfactory statistical properties and competitive numerical performance. A TCGA real data analysis demonstrates the practical value of our approach in analyzing data heterogeneity and sparsity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
