skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 5, 2026

Title: Nuclear Entanglement: New Insights Into the Role of Cytoskeleton and Nucleoskeleton in Plant Nuclear Function
ABSTRACT Of the three types of cytoskeleton known in animals—actin, microtubules, and intermediate filaments—only actin and microtubules exist in plants. Both play important roles in cellular shaping, organelle movement, organization of the endomembrane system, and cell signaling. An emerging, but often overlooked role of the plant cytoskeleton is its dynamic and mutually influential interaction with the nucleus. Here, we summarize recent advances in understanding the role of the cytoskeleton in plant nuclear movement in different biological contexts, a role for nuclear envelope‐associated proteins in reorganizing the actin and microtubule cytoskeleton, and the molecular nature of the nucleus‐cytoskeleton interface and specific proteins contributing to it. In animals, the nucleoskeleton consists of the nuclear lamina, an intermediate‐filament meshwork underlying the nuclear envelope. Plants have evolved an equivalent of this structure, built by different types of proteins. Here, we highlight recent advances in understanding its filamentous organization, newly discovered protein interactions connecting it to nuclear pores, and exciting new evidence that—just like the animal lamina—the plant lamina is involved in chromatin reorganization and epigenetic changes. Together, these new developments create new opportunities toward a deeper understanding of this important regulatory connection between the cytoskeleton and the cell's largest organelle.  more » « less
Award ID(s):
2023348
PAR ID:
10598587
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Cytoskeleton
ISSN:
1949-3584
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The nuclear lamina in plant cells is composed of plant-specific proteins, including nuclear matrix constituent proteins (NMCPs), which have been postulated to be functional analogs of lamin proteins that provide structural integrity to the organelle and help stabilize the three-dimensional organization of the genome. Using genomic editing, we generated alleles for the three genes encoding NMCPs in cultivated tomato (Solanum lycopersicum) to determine if the consequences of perturbing the nuclear lamina in this crop species were similar to or distinct from those observed in the model Arabidopsis thaliana. Loss of the sole NMCP2-class protein was lethal in tomato but is tolerated in Arabidopsis. Moreover, depletion of NMCP1-type nuclear lamina proteins leads to distinct developmental phenotypes in tomato, including leaf morphology defects and reduced root growth rate (in nmcp1b mutants), compared with cognate mutants in Arabidopsis. These findings suggest that the nuclear lamina interfaces with different developmental and signaling pathways in tomato compared with Arabidopsis. At the subcellular level, however, tomato nmcp mutants resembled their Arabidopsis counterparts in displaying smaller and more spherical nuclei in differentiated cells. This result argues that the plant nuclear lamina facilitates nuclear shape distortion in response to forces exerted on the organelle within the cell. 
    more » « less
  2. Discher, Dennis (Ed.)
    The LMNA gene encodes the nuclear envelope proteins Lamins A and C, which comprise a major part of the nuclear lamina, provide mechanical support to the nucleus, and participate in diverse-intracellular signaling. LMNA mutations give rise to a collection of diseases called laminopathies, including dilated cardiomyopathy ( LMNA-DCM) and muscular dystrophies. Although nuclear deformities are a hallmark of LMNA-DCM, the role of nuclear abnormalities in the pathogenesis of -DCM remains incompletely understood. Using induced-pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from LMNA-mutant patients and healthy controls, we show that LMNA mutant iPSC-CM nuclei have altered shape or increased size compared with healthy control iPSC-CM nuclei. The LMNA mutation exhibiting the most severe nuclear deformities, R249Q, additionally caused reduced nuclear stiffness and increased nuclear fragility. Importantly, for all cell lines, the degree of nuclear abnormalities corresponded to the degree of Lamin A/C and Lamin B1 mislocalization from the nuclear envelope. The mislocalization was likely due to altered assembly of Lamin A/C. Collectively, these results point to the importance of correct lamin assembly at the nuclear envelope in providing mechanical stability to the nucleus and suggests that defects in nuclear lamina organization may contribute to the nuclear and cellular dysfunction in LMNA-DCM. 
    more » « less
  3. Abstract Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of outer nuclear membrane KASH proteins, interacting in the nuclear envelope lumen with inner nuclear membrane SUN proteins and connecting the nucleus and cytoskeleton. The paralogous Arabidopsis KASH proteins SINE1 and SINE2 function during stomatal dynamics induced by light–dark transitions and abscisic acid (ABA), which requires F-actin reorganization. SINE2 influences actin depolymerization and SINE1 actin repolymerization. The actin-related protein 2/3 (ARP2/3) complex, an actin nucleator, and the plant actin-bundling and -stabilizing factor SCAB1 are involved in stomatal aperture control. Here, we have tested the genetic interaction of SINE1 and SINE2 with SCAB1 and the ARP2/3 complex. We show that SINE1 and the ARP2/3 complex function in the same pathway during ABA-induced stomatal closure, while SINE2 and the ARP2/3 complex play opposing roles. The actin repolymerization defect observed in sine1-1 is partially rescued in scab1-2 sine1-1, while SINE2 is epistatic to SCAB1. In addition, SINE1 and ARP2/3 act synergistically in lateral root development. The absence of SINE2 renders trichome development independent of the ARP2/3 complex. Together, these data reveal complex and differential interactions of the two KASH proteins with the actin-remodeling apparatus and add evidence to the proposed differential role of SINE1 and SINE2 in actin dynamics. 
    more » « less
  4. Abstract Cytoskeleton‐mediated force transmission regulates nucleus morphology. How nuclei shaping occurs in fibrous in vivo environments remains poorly understood. Here suspended nanofiber networks of precisely tunable (nm–µm) diameters are used to quantify nucleus plasticity in fibrous environments mimicking the natural extracellular matrix. Contrary to the apical cap over the nucleus in cells on 2‐dimensional surfaces, the cytoskeleton of cells on fibers displays a uniform actin network caging the nucleus. The role of contractility‐driven caging in sculpting nuclear shapes is investigated as cells spread on aligned single fibers, doublets, and multiple fibers of varying diameters. Cell contractility increases with fiber diameter due to increased focal adhesion clustering and density of actin stress fibers, which correlates with increased mechanosensitive transcription factor Yes‐associated protein (YAP) translocation to the nucleus. Unexpectedly, large‐ and small‐diameter fiber combinations lead to teardrop‐shaped nuclei due to stress fiber anisotropy across the cell. As cells spread on fibers, diameter‐dependent nuclear envelope invaginations that run the nucleus's length are formed at fiber contact sites. The sharpest invaginations enriched with heterochromatin clustering and sites of DNA repair are insufficient to trigger nucleus rupture. Overall, the authors quantitate the previously unknown sculpting and adaptability of nuclei to fibrous environments with pathophysiological implications. 
    more » « less
  5. After eukaryotic fertilization, gamete nuclei migrate to fuse parental genomes in order to initiate development of the next generation. In most animals, microtubules control female and male pronuclear migration in the zygote. Flowering plants, on the other hand, have evolved actin filament (F-actin)-based sperm nuclear migration systems for karyogamy. Flowering plants have also evolved a unique double-fertilization process: two female gametophytic cells, the egg and central cells, are each fertilized by a sperm cell. The molecular and cellular mechanisms of how flowering plants utilize and control F-actin for double-fertilization events are largely unknown. Using confocal microscopy live-cell imaging with a combination of pharmacological and genetic approaches, we identified factors involved in F-actin dynamics and sperm nuclear migration inArabidopsis thaliana(Arabidopsis) andNicotiana tabacum(tobacco). We demonstrate that the F-actin regulator, SCAR2, but not the ARP2/3 protein complex, controls the coordinated active F-actin movement. These results imply that an ARP2/3-independent WAVE/SCAR-signaling pathway regulates F-actin dynamics in female gametophytic cells for fertilization. We also identify that the class XI myosin XI-G controls active F-actin movement in theArabidopsiscentral cell. XI-G is not a simple transporter, moving cargos along F-actin, but can generate forces that control the dynamic movement of F-actin for fertilization. Our results provide insights into the mechanisms that control gamete nuclear migration and reveal regulatory pathways for dynamic F-actin movement in flowering plants. 
    more » « less