Abstract Liquid–liquid or liquid–air interfaces provide interesting environments to study colloids and are ubiquitous in nature and industry, as well as relevant in applications involving emulsions and foams. They present a particularly intriguing environment for studying active particles which exhibit a host of phenomena not seen in passive systems. Active particles can also provide on‐demand controllability that greatly expands their use in future applications. However, research on active particles at interfaces is relatively rare compared to those at solid surfaces or in the bulk. Here, magnetically steerable active colloids at liquid–air interfaces that self‐propel by bubble production via the catalytic decomposition of chemical fuel in the liquid medium is presented. The bubble formation and dynamics of “patchy” colloids with a patch of catalytic coating on their surface is investigated and compared to more traditional Janus colloids with a hemispherical coating. The patchy colloids tend to produce smaller bubbles and undergo smoother motion which makes them beneficial for applications such as precise micro‐manipulation. This is demonstrated by manipulating and assembling patterns of passive spheres on a substrate as well as at an air–liquid interface. The propulsion and bubble formation of both the Janus and patchy colloids is characterized and it is found that previously proposed theories are insufficient to fully describe their motion and bubble bursting mechanism. Additionally, the colloids, which reside at the air–liquid interface, demonstrate novel interfacial positive gravitaxis towards the droplet edges which is attributed to a torque resulting from opposing downward and buoyant forces on the colloids.
more »
« less
Behavior of chemically powered Janus colloids in lyotropic chromonic liquid crystal
Platinum-coated Janus colloids exhibit self-propelled motion in aqueous solution via the catalytic decomposition of hydrogen peroxide. Here, we report their motion in a uniformly aligned nematic phase of lyotropic chromonic liquid crystal, disodium cromoglycate (DSCG). When active Janus colloids are placed in DSCG, we find that the anisotropy of the liquid crystal imposes a strong sense of direction to their motion; the Janus colloids tend to move parallel to the nematic director. Motion analysis over a range of timescales reveals a crossover from ballistic to anomalous diffusive behavior on timescales below the relaxation time for liquid crystal elastic distortions. Surprisingly we observe that smaller particles roll during ballistic motion, whereas larger particles do not. This result highlights the complexity of phoretically-driven particle motion, especially in an anisotropic fluid environment.
more »
« less
- PAR ID:
- 10598594
- Publisher / Repository:
- Physical Review E
- Date Published:
- Journal Name:
- Physical Review E
- Volume:
- 110
- Issue:
- 5
- ISSN:
- 2470-0045
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report a model to predict equilibrium density profiles for different shaped colloids in two-dimensional liquid, nematic, and crystal states in nonuniform external fields. The model predictions are validated against Monte Carlo simulations and optical microscopy experiments for circular, square, elliptical, and rectangular colloidal particles in AC electric fields between parallel electrodes. The model to predict the densities of all states of different shaped particles is based on a balance of the local quasi-2D osmotic pressure against a compressive force due to induced dipole-field interactions. The osmotic force balance employs equations of state for hard ellipse liquid, nematic, and crystal state osmotic pressures, which are extended to additional particle shapes. The resulting simple analytical model is shown to accurately predict particle densities within liquid, liquid crystal, and crystal states for a broad range of particle shapes, system sizes, and field conditions. These findings provide a basis for quantitative design and control of fields to assemble and reconfigure colloidal particles in interfacial materials and devices.more » « less
-
Abstract The importance of and the difference between molecular versus structural core chirality of substances that form nanomaterials, and their ability to transmit and amplify their chirality to and within a surrounding condensed medium is yet to be exactly understood. Here we demonstrate that neat as well as disodium cromoglycate (DSCG) surface‐modified cellulose nanocrystals (CNCs) with both molecular and morphological core chirality can induce homochirality in racemic nematic lyotropic chromonic liquid crystal (rac‐N‐LCLC) tactoids. In comparison to the parent chiral organic building blocks, D‐glucose, endowed only with molecular chirality, both CNCs showed a superior chirality transfer ability. Here, particularly the structurally compatible DSCG‐modified CNCs prove to be highly effective since the surface DSCG moieties can insert into the DSCG stacks that constitute the racemic tactoids. Overall, this presents a highly efficient pathway for chiral induction in an aqueous medium and thus for understanding the origins of biological homochirality in a suitable experimental system.more » « less
-
null (Ed.)We demonstrate the preparation of colloidal crystals at nematic liquid crystal–air interfaces by simultaneous photopolymerization and assembly. Polymer colloids are produced by polymerization-induced phase separation of 2-hydroxyethyl methacrylate in the non-reactive liquid crystal (LC) 4-cyano-4′-pentylbiphenyl (5CB) using an open-cell setup. Colloids adsorbed to the nematic 5CB–air interface form non-close-packed hexagonal crystals that cover the entire interface area. We examine the mechanism of growth and assembly for the preparation of LC-templated interfacial colloidal superstructures.more » « less
-
Nuclei of ordered materials emerging from the isotropic state usually show a shape topologically equivalent to a sphere; the well-known examples are crystals and nematic liquid crystal droplets. In this work, we explore experimentally and theoretically the toroidal in shape nuclei of columnar lyotropic chromonic liquid crystals coexisting with the isotropic phase. The geometry of these toroids depends strongly on concentrations of the disodium cromoglycate (DSCG) and the crowding agent, polyethylene glycol (PEG). High concentrations of DSCG and PEG result in thick toroids with small central holes, while low concentrations yield thin toroids with wide holes. The multitude of the observed shapes is explained by the balance of bending elasticity and anisotropic interfacial tension.more » « less
An official website of the United States government

