skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Individual differences in navigation skill: towards reliable and valid measures
Abstract Even though successful navigation is vital for survival, individuals vary widely in their navigation skills. Researchers have examined the correlates of such variation using a wide variety of paradigms. However, we know little about the relation among the paradigms used, and their validity for real-world behaviors. In this study, we assessed 94 young adult participants’ encoding of environmental features in one real-world and two virtual environments (or paradigms), using a within-subjects design. Each paradigm involved building a map from memory and pointing to the location of objects while standing at different locations in the environment. Two of the paradigms also used a route efficiency task in which participants aimed to take the shortest possible path to a target object. Factor analysis showed shared and unique variance in individual’s performance associated with each paradigm. Mental rotation and perspective taking tasks correlated with navigation performance differently for different paradigms. The data suggest that (1) virtual measures correlate with real-world ones, (2) the specific tasks used (pointing, map building, shortest route finding) are less important than the paradigm, and (3) there is common variance (i.e., shared individual differences) across paradigms. However, there is also unique paradigm-specific variation. Future research should use multiple paradigms to achieve reliable and valid assessments, ideally with shorter tasks for each.  more » « less
Award ID(s):
2300937
PAR ID:
10598621
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Cognitive Research: Principles and Implications
Volume:
10
Issue:
1
ISSN:
2365-7464
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract External representations powerfully support and augment complex human behavior. When navigating, people often consult external representations to help them find the way to go, but do maps or verbal instructions improve spatial knowledge or support effective wayfinding? Here, we examine spatial knowledge with and without external representations in two studies where participants learn a complex virtual environment. In the first study, we asked participants to generate their own maps or verbal instructions, partway through learning. We found no evidence of improved spatial knowledge in a pointing task requiring participants to infer the direction between two targets, either on the same route or on different routes, and no differences between groups in accurately recreating a map of the target landmarks. However, as a methodological note, pointing was correlated with the accuracy of the maps that participants drew. In the second study, participants had access to an accurate map or set of verbal instructions that they could study while learning the layout of target landmarks. Again, we found no evidence of differentially improved spatial knowledge in the pointing task, although we did find that the map group could recreate a map of the target landmarks more accurately. However, overall improvement was high. There was evidence that the nature of improvement across all conditions was specific to initial navigation ability levels. Our findings add to a mixed literature on the role of external representations for navigation and suggest that more substantial intervention—more scaffolding, explicit training, enhanced visualization, perhaps with personalized sequencing—may be necessary to improve navigation ability. 
    more » « less
  2. Maps have long been a favored tool for navigation in both physical and virtual environments. As a navigation aid in virtual reality, map content and appearance can differ significantly. In this paper, three mini-maps are addressed: the WiM-3DMap, which provides a standard World-in-Miniature of the city model; the novel UC-3DMap, featuring important landmarks alongside ordinary buildings within the user’s vicinity; and the LM-3DMap, presenting only important landmarks. These mini-maps offer varying levels of building detail, potentially affecting spatial knowledge acquisition performance in diverse ways. A comparative study was conducted to evaluate the effectiveness of WiM-3DMap, UC-3DMap, LM-3DMap, and a baseline condition without a mini-map in spatial tasks such as spatial updating, landmark recall, landmark placement, and route recall. The findings demonstrated that LM-3DMap and UC-3DMap outperform WiM-3DMap in the tasks of spatial updating, landmark placement and route recall. However, the absence of detailed local context around the user may impede the effectiveness of LM-3DMap, as evidenced by UC-3DMap’s superior performance in the landmark placement task. These findings underscore the differences in effectiveness among various mini-maps that present distinct levels of building detail. A key conclusion is that including ordinary building information in the user’s immediate surroundings can significantly enhance the performance of a mini-map relying solely on landmarks. 
    more » « less
  3. Abstract People use environmental knowledge to maintain a sense of direction in daily life. This knowledge is typically measured by having people point to unseen locations (judgments of relative direction) or navigate efficiently in the environment (shortcutting). Some people can estimate directions precisely, while others point randomly. Similarly, some people take shortcuts not experienced during learning, while others mainly follow learned paths. Notably, few studies have directly tested the correlation between pointing and shortcutting performance. We compared pointing and shortcutting in two experiments, one using desktop virtual reality (VR) (N = 57) and one using immersive VR (N = 48). Participants learned a new environment by following a fixed route and were then asked to point to unseen locations and navigate to targets by the shortest path. Participants’ performance was clustered into two groups using K-means clustering. One (lower ability) group pointed randomly and showed low internal consistency across trials in pointing, but were able to find efficient routes, and their pointing and efficiency scores were not correlated. The others (higher ability) pointed precisely, navigated by efficient routes, and their pointing and efficiency scores were correlated. These results suggest that with the same egocentric learning experience, the correlation between pointing and shortcutting depends on participants’ learning ability, and internal consistency and discriminating power of the measures. Inconsistency and limited discriminating power can lead to low correlations and mask factors driving human variation. Psychometric properties, largely under-reported in spatial cognition, can advance our understanding of individual differences and cognitive processes for complex spatial tasks. 
    more » « less
  4. Spatial perspective taking is an essential cognitive ability that enables people to imagine how an object or scene would appear from a perspective different from their current physical viewpoint. This process is fundamental for successful navigation, especially when people utilize navigational aids (e.g., maps) and the information provided is shown from a different perspective. Research on spatial perspective taking is primarily conducted using paper-pencil tasks or computerized figural tasks. However, in daily life, navigation takes place in a three-dimensional (3D) space and involves movement of human bodies through space, and people need to map the perspective indicated by a 2D, top down, external representation to their current 3D surroundings to guide their movements to goal locations. In this study, we developed an immersive viewpoint transformation task (iVTT) using ambulatory virtual reality (VR) technology. In the iVTT, people physically walked to a goal location in a virtual environment, using a first-person perspective, after viewing a map of the same environment from a top-down perspective. Comparing this task with a computerized version of a popular paper-and-pencil perspective taking task (SOT: Spatial Orientation Task), the results indicated that the SOT is highly correlated with angle production error but not distance error in the iVTT. Overall angular error in the iVTT was higher than in the SOT. People utilized intrinsic body axes (front/back axis or left/right axis) similarly in the SOT and the iVTT, although there were some minor differences. These results suggest that the SOT and the iVTT capture common variance and cognitive processes, but are also subject to unique sources of error caused by different cognitive processes. The iVTT provides a new immersive VR paradigm to study perspective taking ability in a space encompassing human bodies, and advances our understanding of perspective taking in the real world. 
    more » « less
  5. Background: Drivers gather most of the information they need to drive by looking at the world around them and at visual displays within the vehicle. Navigation systems automate the way drivers navigate. In using these systems, drivers offload both tactical (route following) and strategic aspects (route planning) of navigational tasks to the automated SatNav system, freeing up cognitive and attentional resources that can be used in other tasks (Burnett, 2009). Despite the potential benefits and opportunities that navigation systems provide, their use can also be problematic. For example, research suggests that drivers using SatNav do not develop as much environmental spatial knowledge as drivers using paper maps (Waters & Winter, 2011; Parush, Ahuvia, & Erev, 2007). With recent growth and advances of augmented reality (AR) head-up displays (HUDs), there are new opportunities to display navigation information directly within a driver’s forward field of view, allowing them to gather information needed to navigate without looking away from the road. While the technology is promising, the nuances of interface design and its impacts on drivers must be further understood before AR can be widely and safely incorporated into vehicles. Specifically, an impact that warrants investigation is the role of AR HUDS in spatial knowledge acquisition while driving. Acquiring high levels of spatial knowledge is crucial for navigation tasks because individuals who have greater levels of spatial knowledge acquisition are more capable of navigating based on their own internal knowledge (Bolton, Burnett, & Large, 2015). Moreover, the ability to develop an accurate and comprehensive cognitive map acts as a social function in which individuals are able to navigate for others, provide verbal directions and sketch direction maps (Hill, 1987). Given these points, the relationship between spatial knowledge acquisition and novel technologies such as AR HUDs in driving is a relevant topic for investigation. Objectives: This work explored whether providing conformal AR navigational cues improves spatial knowledge acquisition (as compared to traditional HUD visual cues) to assess the plausibility and justification for investment in generating larger FOV AR HUDs with potentially multiple focal planes. Methods: This study employed a 2x2 between-subjects design in which twenty-four participants were counterbalanced by gender. We used a fixed base, medium fidelity driving simulator for where participants drove while navigating with one of two possible HUD interface designs: a world-relative arrow post sign and a screen-relative traditional arrow. During the 10-15 minute drive, participants drove the route and were encouraged to verbally share feedback as they proceeded. After the drive, participants completed a NASA-TLX questionnaire to record their perceived workload. We measured spatial knowledge at two levels: landmark and route knowledge. Landmark knowledge was assessed using an iconic recognition task, while route knowledge was assessed using a scene ordering task. After completion of the study, individuals signed a post-trial consent form and were compensated $10 for their time. Results: NASA-TLX performance subscale ratings revealed that participants felt that they performed better during the world-relative condition but at a higher rate of perceived workload. However, in terms of perceived workload, results suggest there is no significant difference between interface design conditions. Landmark knowledge results suggest that the mean number of remembered scenes among both conditions is statistically similar, indicating participants using both interface designs remembered the same proportion of on-route scenes. Deviance analysis show that only maneuver direction had an influence on landmark knowledge testing performance. Route knowledge results suggest that the proportion of scenes on-route which were correctly sequenced by participants is similar under both conditions. Finally, participants exhibited poorer performance in the route knowledge task as compared to landmark knowledge task (independent of HUD interface design). Conclusions: This study described a driving simulator study which evaluated the head-up provision of two types of AR navigation interface designs. The world-relative condition placed an artificial post sign at the corner of an approaching intersection containing a real landmark. The screen-relative condition displayed turn directions using a screen-fixed traditional arrow located directly ahead of the participant on the right or left side on the HUD. Overall results of this initial study provide evidence that the use of both screen-relative and world-relative AR head-up display interfaces have similar impact on spatial knowledge acquisition and perceived workload while driving. These results contrast a common perspective in the AR community that conformal, world-relative graphics are inherently more effective. This study instead suggests that simple, screen-fixed designs may indeed be effective in certain contexts. 
    more » « less