Abstract Bayesian inference based on computational simulations plays a crucial role in model-informed damage diagnostics and the design of reliable engineering systems, such as the miter gates studied in this article. While Bayesian inference for damage diagnostics has shown success in some applications, the current method relies on monitoring data from solely the asset of interest and may be affected by imperfections in the computational simulation model. To address these limitations, this article introduces a novel approach called Bayesian inference-based damage diagnostics enhanced through domain translation (BiEDT). The proposed BiEDT framework incorporates historical damage inspection and monitoring data from similar yet different miter gates, aiming to provide alternative data-driven methods for damage diagnostics. The proposed framework first translates observations from different miter gates into a unified analysis domain using two domain translation techniques, namely, cycle-consistent generative adversarial network (CycleGAN) and domain-adversarial neural network (DANN). Following the domain translation, a conditional invertible neural network (cINN) is employed to estimate the damage state, with uncertainty quantified in a Bayesian manner. Additionally, a Bayesian model averaging and selection method is developed to integrate the posterior distributions from different methods and select the best model for decision-making. A practical miter gate structural system is employed to demonstrate the efficacy of the BiEDT framework. Results indicate that the alternative damage diagnostics approaches based on domain translation can effectively enhance the performance of Bayesian inference-based damage diagnostics using computational simulations.
more »
« less
This content will become publicly available on November 5, 2025
Damage Diagnostics of Miter Gates Using Domain Adaptation and Normalizing Flow-Based Likelihood-Free Inference
Miter gates are vital civil infrastructure components in inland waterway transportation networks. To provide risk-informed insights for decisions related to repair and maintenance, sensors have been installed on some miter gates for monitoring. Despite the monitoring system's ability in collecting a large volume of monitoring data, accurately diagnosing damage state in such large structures remains challenging due to the lack of labeled monitoring data, since these structures are designed with high reliability and for a long operation life. This paper addresses this challenge by proposing a damage diagnostics approach for miter gates based on domain adaptation. The proposed approach consists of two main modules. In the first module, Cycle-Consistent generative adversarial network (CycleGAN) is employed to map monitoring data of a miter gate of interest and other similar yet different miter gates into the same analysis domain. Subsequently, a normalizing flow-based likelihood-free inference model is constructed within this common domain using data from source miter gates whose damage states are labeled from historical inspections. The trained normalizing flow model is then used to predict the damage state of the target miter gate based on the translated monitoring data. A case study is presented to demonstrate the effectiveness of the proposed method. The results indicate that the proposed method in general can accurately estimate the damage state of the target miter gate in the presence of uncertainty.
more »
« less
- Award ID(s):
- 2423521
- PAR ID:
- 10598661
- Publisher / Repository:
- The Prognostics and Health Management Society
- Date Published:
- Journal Name:
- Annual Conference of the PHM Society
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2325-0178
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study focuses on developing and examining the effectiveness of Transfer Learning (TL) for structural health monitoring (SHM) systems that transfer knowledge about damage states from one structure (i.e., the source domain) to another structure (i.e., the target domain). Transfer Learning (TL) is an efficient method for knowledge transfer and mapping from source to target domains. In addition, Proper Orthogonal Modes (POMs), which help classify behavior and health, provide a promising tool for damage identification in structural systems. Previous investigations show that damage intensity and location are highly correlated with POM variations for structures under unknown loads. To train damage identification algorithms based on POMs and ML, one generally needs to use multiple simulations to generate damage scenarios. The developed process is applied to a simply supported truss span in a multi-span railway bridge. TL is first used to obtain relationships between POMs for two modeled bridges: one being a source model (i.e., labeled) and the other being the target modeled bridge (i.e., unlabeled). This technique is then implemented to develop POMs for a damaged, unknown target using TL that links source and target POMs. It is shown that the trained knowledge from one bridge was effectively generalized to other, somewhat similar, bridges in the population.more » « less
-
Classifying whether collected information related to emerging topics and domains is fake/incorrect is not an easy task because we do not have enough labeled data in the domains. Given labeled data from source domains (e.g., gossip and health) and limited labeled data from a newly emerging target domain (e.g., COVID-19 and Ukraine war), simply applying knowledge learned from source domains to the target domain may not work well because of different data distribution. To solve the problem, in this paper, we propose an energy-based domain adaptation with active learning for early misinformation detection. Given three real world news datasets, we evaluate our proposed model against two baselines in both domain adaptation and the whole pipeline. Our model outperforms the baselines, improving at least 5% in the domain adaptation task and 10% in the whole pipeline, showing effectiveness of our proposed approach.more » « less
-
Elofsson, Arne (Ed.)Abstract Motivation Cryoelectron tomography (cryo-ET) visualizes structure and spatial organization of macromolecules and their interactions with other subcellular components inside single cells in the close-to-native state at submolecular resolution. Such information is critical for the accurate understanding of cellular processes. However, subtomogram classification remains one of the major challenges for the systematic recognition and recovery of the macromolecule structures in cryo-ET because of imaging limits and data quantity. Recently, deep learning has significantly improved the throughput and accuracy of large-scale subtomogram classification. However, often it is difficult to get enough high-quality annotated subtomogram data for supervised training due to the enormous expense of labeling. To tackle this problem, it is beneficial to utilize another already annotated dataset to assist the training process. However, due to the discrepancy of image intensity distribution between source domain and target domain, the model trained on subtomograms in source domain may perform poorly in predicting subtomogram classes in the target domain. Results In this article, we adapt a few shot domain adaptation method for deep learning-based cross-domain subtomogram classification. The essential idea of our method consists of two parts: (i) take full advantage of the distribution of plentiful unlabeled target domain data, and (ii) exploit the correlation between the whole source domain dataset and few labeled target domain data. Experiments conducted on simulated and real datasets show that our method achieves significant improvement on cross domain subtomogram classification compared with baseline methods. Availability and implementation Software is available online https://github.com/xulabs/aitom. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
We present a supervised learning framework of training generative models for density estimation.Generative models, including generative adversarial networks (GANs), normalizing flows, and variational auto-encoders (VAEs), are usually considered as unsupervised learning models, because labeled data are usually unavailable for training. Despite the success of the generative models, there are several issues with the unsupervised training, e.g., requirement of reversible architectures, vanishing gradients, and training instability. To enable supervised learning in generative models, we utilize the score-based diffusion model to generate labeled data. Unlike existing diffusion models that train neural networks to learn the score function, we develop a training-free score estimation method. This approach uses mini-batch-based Monte Carlo estimators to directly approximate the score function at any spatial-temporal location in solving an ordinary differential equation (ODE), corresponding to the reverse-time stochastic differential equation (SDE). This approach can offer both high accuracy and substantial time savings in neural network training. Once the labeled data are generated, we can train a simple, fully connected neural network to learn the generative model in the supervised manner. Compared with existing normalizing flow models, our method does not require the use of reversible neural networks and avoids the computation of the Jacobian matrix. Compared with existing diffusion models, our method does not need to solve the reverse-time SDE to generate new samples. As a result, the sampling efficiency is significantly improved. We demonstrate the performance of our method by applying it to a set of 2D datasets as well as real data from the University of California Irvine (UCI) repository.more » « less
An official website of the United States government
