skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 5, 2026

Title: Model Inversion Attacks and Prevention Tactics Using the HPCC Systems Platform
Attackers are increasingly using model inversion attacks, in which the outputs of the model can be used to reconstruct confidential or private information to target machine learning models, especially those that handle sensitive financial data. We propose an attack model that exploits the output of classification models to infer details about the training data. We implement our experiments on the HPCC Systems platform. HPCC Systems is known for its robust data processing capabilities. Our approach systematically exploits the output of financial data-based classification models to reconstruct sensitive attributes, thereby demonstrating the potential risks and vulnerabilities resulting from an attack. In our research, we also have tested some defensive strategies to secure the model against inversion attack.  more » « less
Award ID(s):
2413540
PAR ID:
10598748
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3315-1888-2
Page Range / eLocation ID:
1 to 5
Subject(s) / Keyword(s):
Model Inversion Attacks HPCC Systems Cybersecurity
Format(s):
Medium: X
Location:
Houston, TX, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Authentication systems are vulnerable to model inversion attacks where an adversary is able to approximate the inverse of a target machine learning model. Biometric models are a prime candidate for this type of attack. This is because inverting a biometric model allows the attacker to produce a realistic biometric input to spoof biometric authentication systems. One of the main constraints in conducting a successful model inversion attack is the amount of training data required. In this work, we focus on iris and facial biometric systems and propose a new technique that drastically reduces the amount of training data necessary. By leveraging the output of multiple models, we are able to conduct model inversion attacks with 1/10th the training set size of Ahmad and Fuller (IJCB 2020) for iris data and 1/1000th the training set size of Mai et al. (Pattern Analysis and Machine Intelligence 2019) for facial data. We denote our new attack technique as structured random with alignment loss. 
    more » « less
  2. Deep neural networks (DNNs) are influencing a wide range of applications from safety-critical to security-sensitive use cases. In many such use cases, the DNN inference process relies on distributed systems involving IoT devices and edge/cloud severs as participants where a pre-trained DNN model is partitioned/split onto multiple parts and the participants collaboratively execute them. However, often such collaboration requires dynamic DNN partitioning information to be exchanged among the participants over unsecured network or via relays/hops which can lead to novel privacy vulnerabilities. In this paper, we propose a DNN model extraction attack that exploits such vulnerabilities to not only extract the original input data, but also reconstruct the entire victim DNN model. Specifically, the proposed attack model utilizes extracted/leaked data and adversarial autoencoders to generate and train a shadow model that closely mimics the behavior of the original victim model. The proposed attack is query-free and does not require the attacker to have any prior information about the victim model and input data. Using an IoT- edge hardware testbed running collaborative DNN inference, we demonstrate the effectiveness of the proposed attack model in extracting the victim model with high levels of certainty across many realistic scenarios. 
    more » « less
  3. Deep learning models have been used in creating various effective image classification applications. However, they are vulnerable to adversarial attacks that seek to misguide the models into predicting incorrect classes. Our study of major adversarial attack models shows that they all specifically target and exploit the neural networking structures in their designs. This understanding led us to develop a hypothesis that most classical machine learning models, such as random forest (RF), are immune to adversarial attack models because they do not rely on neural network design at all. Our experimental study of classical machine learning models against popular adversarial attacks supports this hypothesis. Based on this hypothesis, we propose a new adversarial-aware deep learning system by using a classical machine learning model as the secondary verification system to complement the primary deep learning model in image classification. Although the secondary classical machine learning model has less accurate output, it is only used for verification purposes, which does not impact the output accuracy of the primary deep learning model, and, at the same time, can effectively detect an adversarial attack when a clear mismatch occurs. Our experiments based on the CIFAR-100 dataset show that our proposed approach outperforms current state-of-the-art adversarial defense systems. 
    more » « less
  4. Model-based attacks can infer training data information from deep neural network models. These attacks heavily depend on the attacker's knowledge of the application domain, e.g., using it to determine the auxiliary data for model-inversion attacks. However, attackers may not know what the model is used for in practice. We propose a generative adversarial network (GAN) based method to explore likely or similar domains of a target model -- the model domain inference (MDI) attack. For a given target (classification) model, we assume that the attacker knows nothing but the input and output formats and can use the model to derive the prediction for any input in the desired form. Our basic idea is to use the target model to affect a GAN training process for a candidate domain's dataset that is easy to obtain. We find that the target model may distort the training procedure less if the domain is more similar to the target domain. We then measure the distortion level with the distance between GAN-generated datasets, which can be used to rank candidate domains for the target model. Our experiments show that the auxiliary dataset from an MDI top-ranked domain can effectively boost the result of model-inversion attacks. 
    more » « less
  5. Website fingerprinting attacks, which use statistical analysis on network traffic to compromise user privacy, have been shown to be effective even if the traffic is sent over anonymity-preserving networks such as Tor. The classical attack model used to evaluate website fingerprinting attacks assumes an on-path adversary, who can observe all traffic traveling between the user’s computer and the secure network. In this work we investigate these attacks under a different attack model, in which the adversary is capable of sending a small amount of malicious JavaScript code to the target user’s computer. The malicious code mounts a cache side-channel attack, which exploits the effects of contention on the CPU’s cache, to identify other websites being browsed. The effectiveness of this attack scenario has never been systematically analyzed, especially in the open-world model which assumes that the user is visiting a mix of both sensitive and non-sensitive sites. We show that cache website fingerprinting attacks in JavaScript are highly feasible. Specifically, we use machine learning techniques to classify traces of cache activity. Unlike prior works, which try to identify cache conflicts, our work measures the overall occupancy of the last-level cache. We show that our approach achieves high classification accuracy in both the open-world and the closed-world models. We further show that our attack is more resistant than network-based fingerprinting to the effects of response caching, and that our techniques are resilient both to network-based defenses and to side-channel countermeasures introduced to modern browsers as a response to the Spectre attack. To protect against cache-based website fingerprinting, new defense mechanisms must be introduced to privacy-sensitive browsers and websites. We investigate one such mechanism, and show that generating artificial cache activity reduces the effectiveness of the attack and completely eliminates it when used in the Tor Browser 
    more » « less