null
                            (Ed.)
                        
                    
            
                            We present methods for implementing arbitrary permutations of qubits under interaction constraints. Our protocols make use of previous methods for rapidly reversing the order of qubits along a path. Given nearest-neighbor interactions on a path of length n , we show that there exists a constant ϵ ≈ 0.034 such that the quantum routing time is at most ( 1 − ϵ ) n , whereas any swap-based protocol needs at least time n − 1 . This represents the first known quantum advantage over swap-based routing methods and also gives improved quantum routing times for realistic architectures such as grids. Furthermore, we show that our algorithm approaches a quantum routing time of 2 n / 3 in expectation for uniformly random permutations, whereas swap-based protocols require time n asymptotically. Additionally, we consider sparse permutations that route k ≤ n qubits and give algorithms with quantum routing time at most n / 3 + O ( k 2 ) on paths and at most 2 r / 3 + O ( k 2 ) on general graphs with radius r . 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
