skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 25, 2026

Title: Probe Pruning: Accelerating LLMs through Dynamic Pruning via Model-Probing
Award ID(s):
2338506 2220286
PAR ID:
10598845
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
International Conference on Learning Representations
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Unstructured neural network pruning is an effective technique that can significantly reduce theoretical model size, computation demand and energy consumption of large neural networks without compromising accuracy. However, a number of fundamental questions about pruning are not answered yet. For example, do the pruned neural networks contain the same representations as the original network? Is pruning a compression or evolution process? Does pruning only work on trained neural networks? What is the role and value of the uncovered sparsity structure? In this paper, we strive to answer these questions by analyzing three unstructured pruning methods (magnitude based pruning, post-pruning re-initialization, and random sparse initialization). We conduct extensive experiments using the Singular Vector Canonical Correlation Analysis (SVCCA) tool to study and contrast layer representations of pruned and original ResNet, VGG, and ConvNet models. We have several interesting observations: 1) Pruned neural network models evolve to substantially different representations while still maintaining similar accuracy. 2) Initialized sparse models can achieve reasonably good accuracy compared to well engineered pruning methods. 3) Sparsity structures discovered by pruning models are not inherently important or useful. 
    more » « less