skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lower Bounds for Adaptive Relaxation-Based Algorithms for Single-Source Shortest Paths
We consider the classical single-source shortest path problem in directed weighted graphs. D. Eppstein proved recently an Ω(n³) lower bound for oblivious algorithms that use relaxation operations to update the tentative distances from the source vertex. We generalize this result by extending this Ω(n³) lower bound to adaptive algorithms that, in addition to relaxations, can perform queries involving some simple types of linear inequalities between edge weights and tentative distances. Our model captures as a special case the operations on tentative distances used by Dijkstra’s algorithm.  more » « less
Award ID(s):
2153723
PAR ID:
10598865
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Mestre, Julián; Wirth, Anthony
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
322
ISSN:
1868-8969
ISBN:
978-3-95977-354-6
Page Range / eLocation ID:
8:1-8:16
Subject(s) / Keyword(s):
single-source shortest paths lower bounds decision trees Theory of computation → Design and analysis of algorithms
Format(s):
Medium: X Size: 16 pages; 1123230 bytes Other: application/pdf
Size(s):
16 pages 1123230 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Srinivasan, Srikanth (Ed.)
    Information complexity is one of the most powerful techniques to prove information-theoretical lower bounds, in which Shannon entropy plays a central role. Though Shannon entropy has some convenient properties, such as the chain rule, it still has inherent limitations. One of the most notable barriers is the square-root loss, which appears in the square-root gap between entropy gaps and statistical distances, e.g., Pinsker’s inequality. To bypass this barrier, we introduce a new method based on min-entropy analysis. Building on this new method, we prove the following results. - An Ω(N^{∑_i α_i - max_i {α_i}}/k) randomized communication lower bound of the k-party set-intersection problem where the i-th party holds a random set of size ≈ N^{1-α_i}. - A tight Ω(n/k) randomized lower bound of the k-party Tree Pointer Jumping problems, improving an Ω(n/k²) lower bound by Chakrabarti, Cormode, and McGregor (STOC 08). - An Ω(n/k+√n) lower bound of the Chained Index problem, improving an Ω(n/k²) lower bound by Cormode, Dark, and Konrad (ICALP 19). Since these problems served as hard problems for numerous applications in streaming lower bounds and cryptography, our new lower bounds directly improve these streaming lower bounds and cryptography lower bounds. On the technical side, min-entropy does not have nice properties such as the chain rule. To address this issue, we enhance the structure-vs-pseudorandomness decomposition used by Göös, Pitassi, and Watson (FOCS 17) and Yang and Zhang (STOC 24); both papers used this decomposition to prove communication lower bounds. In this paper, we give a new breath to this method in the multi-party setting, presenting a new toolkit for proving multi-party communication lower bounds. 
    more » « less
  2. We consider the time and space required for quantum computers to solve a wide variety of problems involving matrices, many of which have only been analyzed classically in prior work. Our main results show that for a range of linear algebra problems—including matrix-vector product, matrix inversion, matrix multiplication and powering—existing classical time-space tradeoffs, several of which are tight for every space bound, also apply to quantum algorithms with at most a constant factor loss. For example, for almost all fixed matrices A, including the discrete Fourier transform (DFT) matrix, we prove that quantum circuits with at most T input queries and S qubits of memory require T = Ω(n^2/S) to compute matrix-vector product Ax for x ∈ {0, 1}^n. We similarly prove that matrix multiplication for n × n binary matrices requires T = Ω(n^3/√S). Because many of our lower bounds are matched by deterministic algorithms with the same time and space complexity, our results show that quantum computers cannot provide any asymptotic advantage for these problems with any space bound. We obtain matching lower bounds for the stronger notion of quantum cumulative memory complexity—the sum of the space per layer of a circuit. We also consider Boolean (i.e. AND-OR) matrix multiplication and matrix-vector products, improving the previous quantum time-space tradeoff lower bounds for n × n Boolean matrix multiplication to T = Ω(n^{2.5}/S^{1/4}) from T = Ω(n^{2.5}/S^{1/2}). Our improved lower bound for Boolean matrix multiplication is based on a new coloring argument that extracts more from the strong direct product theorem that was the basis for prior work. To obtain our tight lower bounds for linear algebra problems, we require much stronger bounds than strong direct product theorems. We obtain these bounds by adding a new bucketing method to the quantum recording-query technique of Zhandry that lets us apply classical arguments to upper bound the success probability of quantum circuits. 
    more » « less
  3. Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)
    We study the time complexity of the discrete k-center problem and related (exact) geometric set cover problems when k or the size of the cover is small. We obtain a plethora of new results: - We give the first subquadratic algorithm for rectilinear discrete 3-center in 2D, running in Õ(n^{3/2}) time. - We prove a lower bound of Ω(n^{4/3-δ}) for rectilinear discrete 3-center in 4D, for any constant δ > 0, under a standard hypothesis about triangle detection in sparse graphs. - Given n points and n weighted axis-aligned unit squares in 2D, we give the first subquadratic algorithm for finding a minimum-weight cover of the points by 3 unit squares, running in Õ(n^{8/5}) time. We also prove a lower bound of Ω(n^{3/2-δ}) for the same problem in 2D, under the well-known APSP Hypothesis. For arbitrary axis-aligned rectangles in 2D, our upper bound is Õ(n^{7/4}). - We prove a lower bound of Ω(n^{2-δ}) for Euclidean discrete 2-center in 13D, under the Hyperclique Hypothesis. This lower bound nearly matches the straightforward upper bound of Õ(n^ω), if the matrix multiplication exponent ω is equal to 2. - We similarly prove an Ω(n^{k-δ}) lower bound for Euclidean discrete k-center in O(k) dimensions for any constant k ≥ 3, under the Hyperclique Hypothesis. This lower bound again nearly matches known upper bounds if ω = 2. - We also prove an Ω(n^{2-δ}) lower bound for the problem of finding 2 boxes to cover the largest number of points, given n points and n boxes in 12D . This matches the straightforward near-quadratic upper bound. 
    more » « less
  4. We prove lower bounds on the time and space required for quantum computers to solve a wide variety of problems involving matrices, many of which have only been analyzed classically in prior work. Using a novel way of applying recording query methods we show that for many linear algebra problems—including matrix-vector product, matrix inversion, matrix multiplication and powering—existing classical time-space tradeoffs also apply to quantum algorithms with at most a constant factor loss. For example, for almost all fixed matrices A, including the discrete Fourier transform (DFT) matrix, we prove that quantum circuits with at most T input queries and S qubits of memory require T=Ω(n^2/S) to compute matrix-vector product Ax for x ∈ {0,1}^n. We similarly prove that matrix multiplication for nxn binary matrices requires T=Ω(n^3/√S). Because many of our lower bounds are matched by deterministic algorithms with the same time and space complexity, our results show that quantum computers cannot provide any asymptotic advantage for these problems at any space bound. We also improve the previous quantum time-space tradeoff lower bounds for n× n Boolean (i.e. AND-OR) matrix multiplication from T=Ω(n^2.5/S^0.5) to T=Ω(n^2.5/S^0.25) which has optimal exponents for the powerful query algorithms to which it applies. Our method also yields improved lower bounds for classical algorithms. 
    more » « less
  5. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    The hereditary discrepancy of a set system is a quantitative measure of the pseudorandom properties of the system. Roughly speaking, hereditary discrepancy measures how well one can 2-color the elements of the system so that each set contains approximately the same number of elements of each color. Hereditary discrepancy has numerous applications in computational geometry, communication complexity and derandomization. More recently, the hereditary discrepancy of the set system of shortest paths has found applications in differential privacy [Chen et al. SODA 23]. The contribution of this paper is to improve the upper and lower bounds on the hereditary discrepancy of set systems of unique shortest paths in graphs. In particular, we show that any system of unique shortest paths in an undirected weighted graph has hereditary discrepancy O(n^{1/4}), and we construct lower bound examples demonstrating that this bound is tight up to polylog n factors. Our lower bounds hold even for planar graphs and bipartite graphs, and improve a previous lower bound of Ω(n^{1/6}) obtained by applying the trace bound of Chazelle and Lvov [SoCG'00] to a classical point-line system of Erdős. As applications, we improve the lower bound on the additive error for differentially-private all pairs shortest distances from Ω(n^{1/6}) [Chen et al. SODA 23] to Ω̃(n^{1/4}), and we improve the lower bound on additive error for the differentially-private all sets range queries problem to Ω̃(n^{1/4}), which is tight up to polylog n factors [Deng et al. WADS 23]. 
    more » « less