skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 22, 2026

Title: Bergman metrics with constant holomorphic sectional curvatures
Abstract The paper studies complex manifolds whose Bergman metrics are incomplete but have constant holomorphic sectional curvature.We will construct a real analytic unbounded domain in C 2 \mathbb{C}^{2}whose Bergman metric is well-defined and has a positive constant holomorphic sectional curvature, which appears to be the first example of this kind.We will answer a long standing folklore conjecture that a Stein manifold has a negative constant holomorphic sectional curvature if and only if it is biholomorphic to a ball with a pluripolar set removed.Together with the uniqueness of a moment problem in the appendix of the paper provided by John Treuer, we will show that, under natural assumptions, there is no complex manifold whose Bergman metric is flat.  more » « less
Award ID(s):
2247151
PAR ID:
10598897
Author(s) / Creator(s):
; ;
Publisher / Repository:
De Gruyter
Date Published:
Journal Name:
Journal für die reine und angewandte Mathematik (Crelles Journal)
ISSN:
0075-4102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We show that there exists a quantity, depending only on C 0 C^{0}data of a Riemannian metric, that agrees with the usual ADM mass at infinity whenever the ADM mass exists, but has a well-defined limit at infinity for any continuous Riemannian metric that is asymptotically flat in the C 0 C^{0}sense and has nonnegative scalar curvature in the sense of Ricci flow.Moreover, the C 0 C^{0}mass at infinity is independent of choice of C 0 C^{0}-asymptotically flat coordinate chart, and the C 0 C^{0}local mass has controlled distortion under Ricci–DeTurck flow when coupled with a suitably evolving test function. 
    more » « less
  2. Abstract We obtain new optimal estimates for the$$L^{2}(M)\to L^{q}(M)$$ L 2 ( M ) L q ( M ) ,$$q\in (2,q_{c}]$$ q ( 2 , q c ] ,$$q_{c}=2(n+1)/(n-1)$$ q c = 2 ( n + 1 ) / ( n 1 ) , operator norms of spectral projection operators associated with spectral windows$$[\lambda ,\lambda +\delta (\lambda )]$$ [ λ , λ + δ ( λ ) ] , with$$\delta (\lambda )=O((\log \lambda )^{-1})$$ δ ( λ ) = O ( ( log λ ) 1 ) on compact Riemannian manifolds$$(M,g)$$ ( M , g ) of dimension$$n\ge 2$$ n 2 all of whose sectional curvatures are nonpositive or negative. We show that these two different types of estimates are saturated on flat manifolds or manifolds all of whose sectional curvatures are negative. This allows us to classify compact space forms in terms of the size of$$L^{q}$$ L q -norms of quasimodes for each Lebesgue exponent$$q\in (2,q_{c}]$$ q ( 2 , q c ] , even though it is impossible to distinguish between ones of negative or zero curvature sectional curvature for any$$q>q_{c}$$ q > q c
    more » « less
  3. Abstract We study the Yamabe flow starting from an asymptotically flat manifold ( M n , g 0 ) (M^{n},g_{0}).We show that the flow converges to an asymptotically flat, scalar flat metric in a weighted global sense if Y ( M , [ g 0 ] ) > 0 Y(M,[g_{0}])>0, and show that the flow does not converge otherwise.If the scalar curvature is nonnegative and integrable, then the ADM mass at time infinity drops by the limit of the total scalar curvature along the flow. 
    more » « less
  4. Abstract In this study, the solution of the Neumann problem associated with the CR Yamabe operator on a subset Ω \Omegaof the CR manifold S 3 {{\mathbb{S}}}^{3}bounded by the Clifford torus Σ \Sigmais discussed. The Yamabe-type problem of finding a contact form on Ω \Omegawhich has zero Tanaka-Webster scalar curvature and for which Σ \Sigmahas a constant p p-mean curvature is also discussed. 
    more » « less
  5. Abstract For every d 3 d\geq 3, we construct a noncompact smooth 𝑑-dimensional Riemannian manifold with strictly positive sectional curvature without isoperimetric sets for any volume below 1.We construct a similar example also for the relative isoperimetric problem in (unbounded) convex sets in R d \mathbb{R}^{d}.The examples we construct have nondegenerate asymptotic cone.The dimensional constraint d 3 d\geq 3is sharp.Our examples exhibit nonexistence of isoperimetric sets only for small volumes; indeed, in nonnegatively curved spaces with nondegenerate asymptotic cones, isoperimetric sets with large volumes always exist.This is the first instance of noncollapsed nonnegatively curved space without isoperimetric sets. 
    more » « less