skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Surficial sediment remobilization by shear between sediment and water above tsunamigenic megathrust ruptures: experimental study
Abstract. Large subduction earthquakes can rupture the shallow part of the megathrust with unusually large displacements and tsunamis. The long duration of the seismic source and high upper-plate compliance contribute to large and protracted long-period motions of the outer upper plate. The resulting shear stress at the sediment–water interface in, for example, the Mw 9.0 2011 Tohoku–Oki earthquake could account for surficial sediment remobilization on the outer margin. We test this hypothesis by simulating in physical tank experiments the combined effects of high- and low-frequency seismic motions on sediment of different properties (chemistry, grain size, water content, and salinity). Our results show that low-frequency motion during a 2011-like earthquake can entrain several centimeters of surficial sediment and that entrainment can be enhanced by high-frequency vertical oscillations. These experiments validate a new mechanism of co-seismic sediment entrainment in deep-water environments.  more » « less
Award ID(s):
2044915
PAR ID:
10598999
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
https://hdl.handle.net/ 11299/263944 (Seibert et al., 2024b)
Date Published:
Journal Name:
Earth Surface Dynamics
Volume:
13
Issue:
3
ISSN:
2196-632X
Page Range / eLocation ID:
341 to 348
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The 2011 Mw9.0 Tohoku-Oki earthquake may be representative of “maximum”earthquakes: it ruptured the entire seismogenic depth range of the Japan megathrust, including the shallowest segment that reaches the trench where the displacement grew to 60 m and spawned a catastrophic tsunami. Models and direct seafloor measurements imply a comparably large initial relative motion and sustained long-period oscillations between sediment and water at the seafloor above the shallowest megathrust segment. This motion may develop enough shear to re-suspend sediment, but exclusively for the maximum earthquakes. This new co-seismic sediment-entrainment process should leave a recognizable sedimentary fingerprint of these earthquakes. Our physical experiments are testing effects of this shear between sediment and water and its interaction with high-frequency vertical shaking. We also investigate the impact of sediment properties and slope on the entrainment. We worked on several synthetic mixtures, defined according to the grain size distribution, clay mineralogy and water content with either freshwater or sea water. The grain size distribution is simplified but matches those of sediment cores from different subduction zones. For each mixture, we built matrices of the erosion rates according to the flow velocities, which shows the role of water content and vertical shaking. We have also identifi ed different mechanism during the runs:grain-by-grain or clasts entrainment, stripping, motion of the sediment interface, and formation of a dense sediment layer above the surface. These observations maybe recorded in the associated deposit, suggesting different fingerprinting by the tsunamigenic earthquakes depending on the characteristics of each subduction zone. 
    more » « less
  2. NA (Ed.)
    We investigate the impact of outer-rise normal fault subduction on the structural evolution of the décollement and frontal prism in a portion of the Japan trench that hosted the 2011 Tohoku earthquake. We use seismic reflection data to map the relative occurrence of sediment accretion, sediment subduction, and frontal tectonic erosion in the shallow portion of the subduction zone and correlate these deformation styles to the magnitude of outer-rise fault throw and incoming plate sediment thickness. These data reveal spatial heterogeneity in the modes of deformation over distances of 5-10 km that necessitate correlative heterogeneity in the geometry and composition of the shallow décollement over similar length-scales. We find that sediment accretion predominantly occurs in regions where incoming plate sediment thickness is greater than fault throw. In these areas, the décollement appears to be non-planar and compositionally homogenous. Conversely, frontal tectonic erosion and slope failures are predominantly observed in regions where fault throw is greater than sediment thickness. In these areas, the décollement may be planar but compositionally heterogeneous. Additionally, spatial variations in near trench slip appear to correlate with the dominant deformation modes, suggesting that both sediment thickness and outer-rise fault throw may be important controls on shallow megathrust behavior. 
    more » « less
  3. Short historical and even shorter instrumental records limit our perspective of earthquake maximum magnitude and recurrence, and thus are inadequate to fully characterize Earth’s complex and multiscale seismic behavior and its consequences. Examining prehistoric events preserved in the geological record is essential to reconstruct the long-term history of earthquakes and to deliver observational data that help to reduce uncertainties in seismic hazard assessment for long return periods. Motivated by the mission to fill the gap in long-term records of giant (Mw 9 class) earthquakes such as the Tohoku-Oki earthquake in 2011, International Ocean Discovery Program (IODP) Expedition 386, Japan Trench Paleoseismology, was designed to test and further develop submarine paleoseismology in the Japan Trench. Earthquake rupture propagation to the trench and sediment remobilization related to the 2011 Mw 9.0 Tohoku-Oki earthquake, and the respective structures and deposits are preserved in trench basins formed by flexural bending of the subducting Pacific Plate. These basins are ideal study areas for testing event deposits for earthquake triggering as they have poorly connected sediment transport pathways from the shelf and experience high sedimentation rates and low benthos activity (and thus high preservation potential) in the ultra-deep water hadal environment. Results from conventional coring covering the last ~1,500 y reveal good agreement between the sedimentary record and historical documents. Subbottom profile data are consistent with basin-fill successions of episodic muddy turbidite deposition and thus define clear targets for paleoseismologic investigations on longer timescales accessible only by deeper coring. In 2021, IODP Expedition 386 successfully collected 29 Giant Piston cores at 15 sites (1 to 3 holes each; total core recovery 831 meters), recovering 20 to 40-meter-long, continuous, upper Pleistocene to Holocene stratigraphic successions of 11 individual trench-fill basins along an axis parallel transect from 36°N – 40.4°N, at water depth between 7445-8023 m below sea level. The cores are currently being examined by multi-method applications to characterize and date event deposits for which the detailed stratigraphic expressions and spatiotemporal distribution will be analyzed for proxy evidence of giant versus smaller earthquakes versus other driving mechanisms. Initial preliminary results presented in this EGU presentation reveal event-stratigraphic successions comprising several 10s of potentially giant-earthquake related event beds, revealing a fascinating record that will unravel the earthquake history of the different along-strike segments, that is 10–100 times longer than currently available information. The data set will enable a statistically robust assessment of the recurrence patterns of giant earthquakes as input for improved probabilistic seismic hazard assessment and advanced understanding of earthquake induced geohazards globally. IODP Expedition 386 Science Party: Piero Bellanova; Morgane Brunet; Zhirong Cai; Antonio Cattaneo; Tae Soo Chang; Kanhsi Hsiung; Takashi Ishizawa; Takuya Itaki; Kana Jitsuno; Joel Johnson; Toshiya Kanamatsu; Myra Keep; Arata Kioka; Christian Maerz; Cecilia McHugh; Aaron Micallef; Luo Min; Dhananjai Pandey; Jean Noel Proust; Troy Rasbury; Natascha Riedinger; Rui Bao; Yasufumi Satoguchi; Derek Sawyer; Chloe Seibert; Maxwell Silver; Susanne Straub; Joonas Virtasalo; Yonghong Wang; Ting-Wei Wu; Sarah Zellers 
    more » « less
  4. Abstract While the receiver function technique has been successfully applied to high‐resolution imaging of sharp discontinuities within and across the lithosphere, it suffers from severe limitations when applied to seafloor seismic recordings. This is because the water and sediment layer could strongly influence the receiver function traces, making detection and interpretation of crust and mantle layering difficult. This effect is often referred to as the singing phenomena in marine environments. We demonstrate, using analytical and synthetic modeling, that this singing effect can be reversed using a selective dereverberation filter tuned to match the elastic property of each layer. We apply the dereverberation filter to high‐quality earthquake records collected from the NoMelt seismic array deployed on normal, mature Pacific seafloor. An appropriate filter designed using the elastic properties of the underlying sediments, obtained from prior studies, greatly improves the detection of Ps conversions from the Moho (∼8.6 km) and from a sharp discontinuity (<∼5 km) across the lithosphere asthenosphere transition (∼72 km). Sensitivity tests show that the dereverberation filter is mostly sensitive to the two‐way travel time of the shear wave in sediment and is robust to seismic noise and small errors in the sediment properties. Our analysis suggests that selectively filtering out the sediment reverberations from ocean seismic data could make inferences on subsurface structure more robust. We expect that this study will enable high‐resolution receiver function imaging of the oceanic plate across the growing ocean bottom seismic arrays being deployed in the global oceans. 
    more » « less
  5. Abstract Soft sediment layers can significantly amplify seismic waves from earthquakes. Large dynamic strains can trigger a nonlinear response of shallow soils with low strength, which is characterized by a shift of resonance frequencies, ground motion deamplification, and in some cases, soil liquefaction. We investigate the response of marine sediments during earthquake ground motions recorded along a fiber‐optic cable offshore the Tohoku region, Japan, with distributed acoustic sensing (DAS). We compute AutoCorrelation Functions (ACFs) of the ground motions from 105 earthquakes in different frequency bands. We detect time delays in the ACF waveforms that are converted to relative velocity changes (dv/v).dv/vdrops, which characterize soil nonlinearity, are observed during the strongest ground motions and exhibit a large variability along the cable. This study demonstrates that DAS can be used to infer the dynamic properties of the shallow Earth with an unprecedented spatial resolution. 
    more » « less