skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Semantically Enriched Text Generation for {QA} through Dense Paraphrasing
Large Language Models (LLMs) are very effective at extractive language tasks such as Question Answering (QA). While LLMs can improve their performance on these tasks through increases in model size (via massive pretraining) and/or iterative on-the-job training (one-shot, few-shot, chain-of-thought), we explore what other less resource-intensive and more efficient types of data augmentation can be applied to obtain similar boosts in performance. We define multiple forms of Dense Paraphrasing (DP) and obtain DP-enriched versions of different contexts. We demonstrate that performing QA using these semantically enriched contexts leads to increased performance on models of various sizes and across task domains, without needing to increase model size.  more » « less
Award ID(s):
2326985
PAR ID:
10599003
Author(s) / Creator(s):
; ; ;
Editor(s):
Abbas, Mourad; Freihat, Abed Alhakim
Publisher / Repository:
Association for Computational Linguistics
Date Published:
Edition / Version:
7
Volume:
1
Issue:
1
ISBN:
979-8-89176-165-0
Page Range / eLocation ID:
279-286
Subject(s) / Keyword(s):
Dense Paraphrasing Question answering LLMs chain-of-thought
Format(s):
Medium: X
Location:
Trento, Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability of generative language models (GLMs) to generate text has improved considerably in the last few years, enabling their use for generative data augmentation. In this work, we propose CONDA, an approach to further improve GLM’s ability to generate synthetic data by reformulating data generation as context generation for a given question-answer (QA) pair and leveraging QA datasets for training context generators. Then, we cast downstream tasks into the same question answering format and adapt the fine-tuned context generators to the target task domain. Finally, we use the fine-tuned GLM to generate relevant contexts, which are in turn used as synthetic training data for their corresponding tasks. We perform extensive experiments on multiple classification datasets and demonstrate substantial improvements in performance for both few- and zero-shot settings. Our analysis reveals that QA datasets that require high-level reasoning abilities (e.g., abstractive and common-sense QA datasets) tend to give the best boost in performance in both few-shot and zero-shot settings. 
    more » « less
  2. Large language models (LLMs) demonstrate remarkable performance on knowledge-intensive tasks, suggesting that real-world knowledge is encoded in their model parameters. However, besides explorations on a few probing tasks in limited knowledge domains, it is not well understood how to evaluate LLMs' knowledge systematically and how well their knowledge abilities generalize, across a spectrum of knowledge domains and progressively complex task formats. To this end, we propose KGQuiz, a knowledge-intensive benchmark to comprehensively investigate the knowledge generalization abilities of LLMs. KGQuiz is a scalable framework constructed from triplet-based knowledge, which covers three knowledge domains and consists of five tasks with increasing complexity: true-or-false, multiple-choice QA, blank filling, factual editing, and open-ended knowledge generation. To gain a better understanding of LLMs' knowledge abilities and their generalization, we evaluate 10 open-source and black-box LLMs on the KGQuiz benchmark across the five knowledge-intensive tasks and knowledge domains. Extensive experiments demonstrate that LLMs achieve impressive performance in straightforward knowledge QA tasks, while settings and contexts requiring more complex reasoning or employing domain-specific facts still present significant challenges. We envision KGQuiz as a testbed to analyze such nuanced variations in performance across domains and task formats, and ultimately to understand, evaluate, and improve LLMs' knowledge abilities across a wide spectrum of knowledge domains and tasks. 
    more » « less
  3. Abstract Large language models (LLMs) are capable of successfully performing many language processing tasks zero-shot (without training data). If zero-shot LLMs can also reliably classify and explain social phenomena like persuasiveness and political ideology, then LLMs could augment the computational social science (CSS) pipeline in important ways. This work provides a road map for using LLMs as CSS tools. Towards this end, we contribute a set of prompting best practices and an extensive evaluation pipeline to measure the zero-shot performance of 13 language models on 25 representative English CSS benchmarks. On taxonomic labeling tasks (classification), LLMs fail to outperform the best fine-tuned models but still achieve fair levels of agreement with humans. On free-form coding tasks (generation), LLMs produce explanations that often exceed the quality of crowdworkers’ gold references. We conclude that the performance of today’s LLMs can augment the CSS research pipeline in two ways: (1) serving as zero-shot data annotators on human annotation teams, and (2) bootstrapping challenging creative generation tasks (e.g., explaining the underlying attributes of a text). In summary, LLMs are posed to meaningfully participate in social science analysis in partnership with humans. 
    more » « less
  4. Generating a chain of thought (CoT) can increase large language model (LLM) performance on a wide range of tasks. Zero-shot CoT evaluations, however, have been conducted primarily on logical tasks (e.g. arithmetic, commonsense QA). In this paper, we perform a controlled evaluation of zero-shot CoT across two sensitive domains: harmful questions and stereotype benchmarks. We find that using zero-shot CoT reasoning in a prompt can significantly increase a model's likelihood to produce undesirable output. Without future advances in alignment or explicit mitigation instructions, zero-shot CoT should be avoided on tasks where models can make inferences about marginalized groups or harmful topics. 
    more » « less
  5. Advances in large language models (LLMs) have empowered a variety of applications. However, there is still a significant gap in research when it comes to understanding and enhancing the capabilities of LLMs in the field of mental health. In this work, we present a comprehensive evaluation of multiple LLMs on various mental health prediction tasks via online text data, including Alpaca, Alpaca-LoRA, FLAN-T5, GPT-3.5, and GPT-4. We conduct a broad range of experiments, covering zero-shot prompting, few-shot prompting, and instruction fine-tuning. The results indicate a promising yet limited performance of LLMs with zero-shot and few-shot prompt designs for mental health tasks. More importantly, our experiments show that instruction finetuning can significantly boost the performance of LLMs for all tasks simultaneously. Our best-finetuned models, Mental-Alpaca and Mental-FLAN-T5, outperform the best prompt design of GPT-3.5 (25 and 15 times bigger) by 10.9% on balanced accuracy and the best of GPT-4 (250 and 150 times bigger) by 4.8%. They further perform on par with the state-of-the-art task-specific language model. We also conduct an exploratory case study on LLMs' capability on mental health reasoning tasks, illustrating the promising capability of certain models such as GPT-4. We summarize our findings into a set of action guidelines for potential methods to enhance LLMs' capability for mental health tasks. Meanwhile, we also emphasize the important limitations before achieving deployability in real-world mental health settings, such as known racial and gender bias. We highlight the important ethical risks accompanying this line of research. 
    more » « less