skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 5, 2026

Title: In-house Fabrication of Nanoplastics of Tunable Composition and Application: Assessment of Bioelectric Changes in Primary Rat Lung Alveolar Epithelial Cell Monolayers Exposed to Nanoplastics
Award ID(s):
2343747
PAR ID:
10599065
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Bio-Protocol LLC
Date Published:
Journal Name:
BIO-PROTOCOL
Volume:
15
Issue:
1373
ISSN:
2331-8325
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Millions of tons of plastics enter the oceans yearly, and they can be fragmented by ultraviolet and mechanical means into nanoplastics. Here, we report the direct observation of nanoplastics in global ocean water leveraging a unique shrinking surface bubble deposition (SSBD) technique. SSBD involves optically heating plasmonic nanoparticles to form a surface bubble and leveraging the Marangoni flow to concentrate suspended nanoplastics onto the surface, allowing direct visualization using electron microscopy. With the plasmonic nanoparticles co-deposited in SSBD, the surface-enhanced Raman spectroscopy effect is enabled for direct chemical identification of trace amounts of nanoplastics. In the water samples from two oceans, we observed nanoplastics made of nylon, polystyrene, and polyethylene terephthalate—all common in daily consumables. The plastic particles have diverse morphologies, such as nanofibers, nanoflakes, and ball-stick nanostructures. These nanoplastics may profoundly affect marine organisms, and our results can provide critical information for appropriately designing their toxicity studies. 
    more » « less
  2. (1) Background: Nanoplastics are emerging environmental pollutants with potential toxic effects on aquatic organisms. This study investigates the toxicity of NPs in Biomphalaria glabrata, a freshwater snail species widely used as a bioindicator species in ecotoxicology studies.; (2) Methods: We exposed three generations (F0–F2) of B. glabrata snail embryos to different sizes of polystyrene nanoparticles and assessed responses.; (3) Results: We observed severe effects on F0 to F2 B. glabrata embryos, including size-dependent (30 to 500 nm) increases in mortality rates, size and dosage-dependent (1 to 100 ppm) effects on hatching rates with concentration-dependent toxicity in the 30 nm exposure group. The F2 generation embryos appear to be most responsive to detoxification (CYP450) and pollutant metabolism (HSP70) at 48-h-post-treatment (HPT), while our developmental marker (MATN1) was highly upregulated at 96-HPT. We also report a particle-size-dependent correlation in HSP70 and CYP450 mRNA expression, as well as enhanced upregulation in the offspring of exposed snails. We also observed significant reductions in hatching rates for F2.; (4) Conclusions: These findings indicate that F2 generation embryos appear to exhibit increased stress from toxic substances inherited from their parents and grandparents (F1 and F0). This study provides valuable insights into the impact of plastic particulate pollution on multiple generations and highlights the importance of monitoring and mitigating plastic waste. 
    more » « less