skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 23, 2026

Title: Mitigating Side Effects in Multi-Agent Systems Using Blame Assignment
When independently trained or designed robots are deployed in a shared environment, their combined actions can lead to unintended negative side effects (NSEs). To ensure safe and efficient operation, robots must optimize task performance while minimizing the penalties associated with NSEs, balancing individual objectives with collective impact. We model the problem of mitigating NSEs in a cooperative multi-agent system as a bi-objective lexicographic decentralized Markov decision process. We assume independence of transitions and rewards with respect to the robots' tasks, but the joint NSE penalty creates a form of dependence in this setting. To improve scalability, the joint NSE penalty is decomposed into individual penalties for each robot using credit assignment, which facilitates decentralized policy computation. We empirically demonstrate, using mobile robots and in simulation, the effectiveness and scalability of our approach in mitigating NSEs. Code: \url{https://tinyurl.com/RECON-NSE-Mitigation}  more » « less
Award ID(s):
2416459
PAR ID:
10599150
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE ICRA 2025
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Penalty-based strategies, such as congestion pricing, have been employed to improve traffic network efficiency, but they face criticism for their negative impact on users and equity concerns. Collaborative routing, which allows users to negotiate route choices, offers a solution that considers individual heterogeneity. Personalized incentives can encourage such collaboration and are more politically acceptable than penalties. This study proposes a collaborative routing strategy that uses personalized incentives to guide users towards desired traffic states while promoting multidimensional equity. Three equity dimensions are considered: accessibility equity (equal access to jobs, services, and education), inclusion equity (route suggestions and incentives that do not favor specific users), and utility equity (envy-free solutions where no user feels others have more valuable incentives). The strategy prioritizes equitable access to societal services and activities, ensuring accessibility equity in routing solutions. Inclusion equity is maintained through non-negative incentives that consider user heterogeneity without excluding anyone. An envy-free compensation mechanism achieves utility equity by eliminating envy over incentive-route bundles. A constrained traffic assignment (CTA) formulation and consensus optimization variant are then devised to break down the centralized problem into smaller, manageable parts and a decentralized algorithm is developed for scalability in large transportation networks and user populations. Numerical studies investigate the model's enhancement of equity dimensions and the impact of hyperparameters on system objective tradeoffs and demonstrate the algorithm convergence. 
    more » « less
  2. A popular method for flexible function estimation in nonparametric models is the smoothing spline. When applying the smoothing spline method, the nonparametric function is estimated via penalized least squares, where the penalty imposes a soft constraint on the function to be estimated. The specification of the penalty functional is usually based on a set of assumptions about the function. Choosing a reasonable penalty function is the key to the success of the smoothing spline method. In practice, there may exist multiple sets of widely accepted assumptions, leading to different penalties, which then yield different estimates. We refer to this problem as the problem of ambiguous penalties. Neglecting the underlying ambiguity and proceeding to the model with one of the candidate penalties may produce misleading results. In this article, we adopt a Bayesian perspective and propose a fully Bayesian approach that takes into consideration all the penalties as well as the ambiguity in choosing them. We also propose a sampling algorithm for drawing samples from the posterior distribution. Data analysis based on simulated and real‐world examples is used to demonstrate the efficiency of our proposed method. 
    more » « less
  3. null (Ed.)
    Modular soft robots combine the strengths of two traditionally separate areas of robotics. As modular robots, they can show robustness to individual failure and reconfigurability; as soft robots, they can deform and undergo large shape changes in order to adapt to their environment, and have inherent human safety. However, for sensing and communication these robots also combine the challenges of both: they require solutions that are scalable (low cost and complexity) and efficient (low power) to enable collectives of large numbers of robots, and these solutions must also be able to interface with the high extension ratio elastic bodies of soft robots. In this work, we seek to address these challenges using acoustic signals produced by piezoelectric surface transducers that are cheap, simple, and low power, and that not only integrate with but also leverage the elastic robot skins for signal transmission. Importantly, to further increase scalability, the transducers exhibit multi-functionality made possible by a relatively flat frequency response across the audible and ultrasonic ranges. With minimal hardware, they enable directional contact-based communication, audible-range communication at a distance, and exteroceptive sensing. We demonstrate a subset of the decentralized collective behaviors that these functions make possible with multi-robot hardware implementations. The use of acoustic waves in this domain is shown to provide distinct advantages over existing solutions. 
    more » « less
  4. null (Ed.)
    Modular soft robots combine the strengths of two traditionally separate areas of robotics. As modular robots, they can show robustness to individual failure and reconfigurability; as soft robots, they can deform and undergo large shape changes in order to adapt to their environment, and have inherent human safety. However, for sensing and communication these robots also combine the challenges of both: they require solutions that are scalable (low cost and complexity) and efficient (low power) to enable collectives of large numbers of robots, and these solutions must also be able to interface with the high extension ratio elastic bodies of soft robots. In this work, we seek to address these challenges using acoustic signals produced by piezoelectric surface transducers that are cheap, simple, and low power, and that not only integrate with but also leverage the elastic robot skins for signal transmission. Importantly, to further increase scalability, the transducers exhibit multi-functionality made possible by a relatively flat frequency response across the audible and ultrasonic ranges. With minimal hardware, they enable directional contact-based communication, audible-range communication at a distance, and exteroceptive sensing. We demonstrate a subset of the decentralized collective behaviors these functions make possible with multi-robot hardware implementations. The use of acoustic waves in this domain is shown to provide distinct advantages over existing solutions. 
    more » « less
  5. In the last decade, convolutional neural networks (CNNs) have evolved to become the dominant models for various computer vision tasks, but they cannot be deployed in low-memory devices due to its high memory requirement and computational cost. One popular, straightforward approach to compressing CNNs is network slimming, which imposes an L1 penalty on the channel-associated scaling factors in the batch normalization layers during training. In this way, channels with low scaling factors are identified to be insignificant and are pruned in the models. In this paper, we propose replacing the L1 penalty with the Lp and transformed L1 (TL1) penalties since these nonconvex penalties outperformed L1 in yielding sparser satisfactory solutions in various compressed sensing problems. In our numerical experiments, we demonstrate network slimming with Lp and TL1 penalties on VGGNet and Densenet trained on CIFAR 10/100. The results demonstrate that the nonconvex penalties compress CNNs better than L1. In addition, TL1 preserves the model accuracy after channel pruning, L1/2 and L3/4 yield compressed models with similar accuracies as L1 after retraining. 
    more » « less