Although ZrSiO 4 is the most well-known compound in the zircon-structured family (space group I41/amd), the experimental conditions for preparing pure and well-crystallized phases which are doped with tetravalent element via hydrothermal synthesis has never been clearly discussed in the literature. With the aim to answer this question, the experimental conditions of preparation of ZrSiO 4 and (Zr,Ce)SiO 4 were investigated in order to synthesize well-crystallized and pure phases. A multiparametric study has been carried out using soft hydrothermal conditions, with variables including reactant concentration, initial pH of the reactive medium, and duration of the hydrothermal treatment. Pure ZrSiO 4 was obtained through hydrothermal treatment for 7 days at 250°C, within a large acidity range (1.0 ≤ pH ≤ 9.0) and starting from C Si ≈ C Zr ≥ 0.2 mol·L -1 . As hydrothermally prepared zircon structured phases can be both hydrated and hydroxylated, its annealed form was also studied after heating to 1000°C. Based on these results, the synthesis of (Zr,Ce)SiO 4 solid solutions were also investigated. The optimal hydrothermal conditions to acquire pure and crystallized phases were obtained in 7 days at 250°C with initial pH = 1 and concentration of the reactants equal to 0.2 mol·L -1 . This led to (Zr,Ce)SiO 4 solid solutions with the incorporated Ce content up to 40 mol.%. Samples were characterized by multiple methods, including lab and synchrotron PXRD, IR and Raman spectroscopies, SEM, and TGA. Moreover, it was found that these phases were thermally stable in air up to at least 1000°C. 
                        more » 
                        « less   
                    This content will become publicly available on March 1, 2026
                            
                            Zircon Solubility, Metamict ZrSiO 4 Replacement, and Hydrothermal Zircon Formation at Upper Crustal Pressures
                        
                    
    
            Abstract Stable and inert under most conditions, zircon can be dissolved and precipitated by aqueous fluids in the upper crust. Geochemical models using currently available thermodynamic properties for Zr aqueous species at 0.2 GPa predict that zircon solubility increases with temperature from 400 to 900°C in fluids saturated with quartz or baddeleyite. Zircon solubility is low in near‐neutral pH fluids and enhanced in acidic and alkaline fluids. Adding NaOH and to a lesser extent NaF to the solution significantly increases the solution pH values and Zr concentrations at zircon saturation. Modeled Zr concentrations are often orders of magnitude different from zircon solubilities measured experimentally under similar conditions. Metamict (amorphous) ZrSiO4is more soluble than crystalline zircon and is replaced through a coupled dissolution‐precipitation process. Reaction path kinetics models were constructed to simulate experiments described in the literature and extract rate constants for replacement of metamict ZrSiO4. Replacement is rate limited by zircon precipitation and is nearly complete after 1 week when fluid is present at 600°C, with the rate of replacement increasing with temperature. In a closed system, hydrothermal zircon may form by replacement of radiation‐damaged zircon but not fully crystalline zircon. Replacement of metamict ZrSiO4forms characteristic porosity. Geochemical models identify the conditions that promote zircon solubility, metamict ZrSiO4replacement, and the formation of hydrothermal zircon, and provide constraints on the interpretation of zircon U‐Pb dates of hydrothermal events. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10599253
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 26
- Issue:
- 3
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Charlier, B (Ed.)Quantifying the oxygen fugacity (fo2) of high temperature lithospheric fluids, including hydrothermal systems, presents a challenge because these fluids are difficult to capture and measure in the same manner as quenched glasses of silicate melts. The chemical properties of fluids can however be inferred through mineral proxies that interacted with the fluids through precipitation or recrystallization. Here, we present hydrothermal experiments to quantify the partition coefficients of rare earth elements (REEs) – including redox-sensitive Ce and Eu – between zircon and fluid. Experiments were conducted in a piston cylinder device at temperatures that range from 1200 to 800 ◦C under fo2-buffered conditions in a SiO2-ZrO2-NaCl-REE-oxide system, and similar experiments were performed in the absence of NaCl (31 total experiments). The fo2 was buffered to values that range from approximately 3 log units below to 7 log units above the fayalite magnetite quartz equilibrium. Zircon REE concentrations were quantified using laser ablation inductively coupled plasma mass spectrometry whereas the quenched fluids were extracted and measured by solution-based inductively coupled plasma mass spectrometry. Zircon Ce anomalies, quantified relative to La and Pr, exhibit sensitivity to oxygen fugacity and temperature and our preferred calibration is: log [ Ce Ce* ) D  1 ] = (0.237 ± 0.040)× log(fo2) + 9437±640 T(K)  5.02 ± 0.38 where the Ce anomalies are calculated from the partition coefficients for La, Ce, and Pr. Zircon Eu anomalies are also a function of oxygen fugacity though they exhibit no systematic dependence on T. Our preferred calibration is described by:  Eu Eu* ) D = 1 1+100.30±0.04 [0.27±0.03]×ΔFMQ We performed additional calculations, in which lattice strain parabolas were fit to all non-redox sensitive rare earth elements that were added to the starting composition (i.e., La, Pr, Sm, Gd, Dy, Ho, Tm, Lu) as an alternate means to calculate anomalies. This method yields broadly similar results, though we prefer the La-Pr calibrations due to the non-systematic REE patterns frequently encountered with hydrothermal zircons; e.g., LREE zircon enrichment relative to other REEs. These experiments are applied to quantify the fo2 of fluids during mineralization of critical element-bearing systems, and separately to calculate the oxygen fugacity values of fluids formed during plate boundary processes.more » « less
- 
            (Per)alkaline complexes and carbonatites evolve through a complex sequence of magmatic-hydrothermal processes. Most of them are overprinted by late auto-metasomatic processes which involves the mobilization, fractionation and/or enrichment of critical elements, such as the rare earth elements (REE) [1]. However, our current ability to predict the behavior of REE in high temperature aqueous fluids and interpret these natural systems using geochemical modeling depends on the availability of thermodynamic data for the REE minerals and aqueous species. Previous experimental work on REE solubility has focused on acidic aqueous fluids up to ~300 °C and considered chloride, fluoride and sulfate as important ligands for their transport [2]. However, magmatic-hydrothermal systems that form these critical mineral deposits may cover a wider range of fluid chemistries spanning acidic to alkaline pH as well as temperatures and pressures at which the fluids are supercritical. A few recently published studies have shown that other ligands (e.g., REE carbonates and/or combined fluoride species) could become important in near-neutral to alkaline fluids [3,4], and that REE mobility can also be increased in saline alkaline fluids reacted with fluorite [5]. Here we present new hydrothermal REE hydroxyl/chloride speciation data and REE phosphate/hydroxide minerals [6,7], calcite and fluorite solubility experiments as a function of pH, salinity and temperature. We use an integrated approach to link a wide array of experimental techniques (solubility, calorimetry, and spectroscopy) with thermodynamic optimizations using GEMSFITS [8], and present the development of a new experimental database for REE and its integration into the MINES thermodynamic database (https://geoinfo.nmt.edu/mines-tdb). The latter permits simulating hydrothermal fluid-rock interaction and ore-forming processes in critical mineral deposits to better understand the behavior of REE during metasomatism.more » « less
- 
            Monazite is a light rare earth element (REE) phosphate found in REE mineral deposits, such as those formed in (per)alkaline and carbonatite magmatic-hydrothermal systems, where it occurs in association to the development of alteration zones and hydrothermal veins. Although it has been recognized that monazite may undergo replacement by coupled dissolution-precipitation processes, currently there is no model describing the compositional REE variations in monazite resulting from direct interaction with or precipitation from hydrothermal fluids. To develop such a model requires quantification of the thermodynamic properties of the aqueous REE species and the properties of the monazite endmembers and their solid solutions. The thermodynamic properties of monazite endmembers have been determined previously using calorimetric methods and low temperature solubility studies, but only a few solubility studies have been conducted at >100 °C. In this study, the solubility products (logKs0) of LaPO4, PrPO4, NdPO4, and EuPO4 monazite endmembers have been measured at temperatures between 100 and 250 °C and saturated water vapor pressure. The solubility products are reported with an uncertainty of ±0.2 (95% confidence) according to the reaction, REEPO4(s) = REE3+ + PO43−. (see table in manuscript) The REE phosphates display a retrograde solubility, with the measured Ks0 values varying several orders of magnitude over the experimental temperature range. Discrepancies were observed between the experimental solubility products and the calculated values resulting from combining calorimetric data of monazite with the properties of the aqueous REE3+ and PO43− species available in the literature. The differences between the calculated and measured standard Gibbs energy of reaction (ΔrG0) for PrPO4, NdPO4, and EuPO4 increased with higher temperatures (up to 15 kJ mol−1 at 250 °C), whereas for LaPO4 these differences increased at lower temperatures (up to 8 kJ mol−1 at 100 °C). To reconcile these discrepancies, the standard enthalpy of formation (ΔfH0) of monazite was optimized by fitting the experimental solubility data and extrapolating these fits to reference conditions of 25 °C and 1 bar. The optimized thermodynamic data provide the first internally consistent dataset for the solubility of all the monazite endmembers, and can be used to model REE partitioning between monazite and hydrothermal fluids at >100 °C.more » « less
- 
            Critical mineral deposits commonly form in magmatic-hydrothermal systems including carbonatites and/or alkaline syenites, and more evolved peralkaline granites where the rare earth element (REE) undergo a complex array of partitioning, transport and mineralization. Significant alteration and veining zones develop in these deposits and can be used to vector ore zones in the field [1]. The REE ore minerals typically reflect the characteristics of these systems, which are enriched in carbonate, fluoride, and phosphate or a combination thereof. The REE can also be incorporated into vein minerals such as calcite, fluorite and apatite where the REE3+ exchange for Ca2+ on the crystal lattice [2]. These minerals give us clues about the hydrothermal reaction paths of REE in critical mineral deposits. This study aims to: 1) present our recent findings from hydrothermal fluid-mineral REE partitioning experiments, 2) discuss thermodynamic models to simulate REE in critical mineral deposits, and 3) link the thermodynamic simulations to field observations. Hydrothermal fluid-calcite partitioning experiments were conducted between 100 and 200 °C by hydrothermal fluid mixing and precipitation [2] at near neutral to mildly alkaline pH (6 – 9). The REE concentrations in synthetic calcite crystals and aqueous fluids sampled in situ were used to fit the data to the lattice strain model [3] and using the Dual Thermodynamic approach [4]. A second type of experiment consisted of reacting natural fluorite and apatite crystals with acidic to mildly acidic (pH of 2 – 4) aqueous fluids in batch-type reactors to study the behavior of REE and mineral dissolution-precipitation reactions near crystal surfaces. The GEMS code package [5] was used to implement these new data into a thermodynamic model and simulate possible REE reaction paths in hydrothermal fluids. Two REE mineral deposits in New Mexico (Lemitar and Gallinas Mountains) present ideal case studies to illustrate how these models can be linked to field observations from natural systems. [1] Gysi et al. (2016), Econ. Geol. 111, 1241-1276; [2] Perry and Gysi (2020), Geochim. Cosmochim. Acta 286, 177-197; [3] Blundy and Wood (1994) Nature 372, 452-454; [4] Kulik (2006), Chem. Geol. 225, 189-212; [5] Kulik et al. (2013), Computat. Geosci. 17, 1-24.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
