skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Demonstration of the rodeo algorithm on a quantum computer
The rodeo algorithm is an efficient algorithm for eigenstate preparation and eigenvalue estimation for any observable on a quantum computer. This makes it a promising tool for studying the spectrum and structure of atomic nuclei as well as other fields of quantum many-body physics. The only requirement is that the initial state has sufficient overlap probability with the desired eigenstate. While it is exponentially faster than well-known algorithms such as phase estimation and adiabatic evolution for eigenstate preparation, it has yet to be implemented on an actual quantum device. In this work, we apply the rodeo algorithm to determine the energy levels of a random one-qubit Hamiltonian, resulting in a relative error of 0.08% using mid-circuit measurements on the IBM Q device Casablanca. This surpasses the accuracy of directly-prepared eigenvector expectation values using the same quantum device. We take advantage of the high-accuracy energy determination and use the Hellmann-Feynman theorem to compute eigenvector expectation values for a different random one-qubit observable. For the Hellmann-Feynman calculations, we find a relative error of 0.7%. We conclude by discussing possible future applications of the rodeo algorithm for multi-qubit Hamiltonians.  more » « less
Award ID(s):
2310620
PAR ID:
10599334
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
The European Physical Journal A
Volume:
60
Issue:
7
ISSN:
1434-601X
Page Range / eLocation ID:
151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This thesis investigates quantum algorithms for eigenstate preparation, with a primary focus on solving eigenvalue problems such as the Schrodinger equation by utilizing near-term quantum computing devices. These problems are ubiquitous in several scientific fields, but more accurate solutions are specifically needed as a prerequisite for many quantum simulation tasks. To address this, we establish three methods in detail: quantum adiabatic evolution with optimal control, the Rodeo Algorithm, and the Variational Rodeo Algorithm.The first method explored is adiabatic evolution, a technique that prepares quantum states by simulating a quantum system that evolves slowly over time. The adiabatic theorem can be used to ensure that the system remains in an eigenstate throughout the process, but its implementation can often be infeasible on current quantum computing hardware. We employ a unique approach using optimal control to create custom gate operations for superconducting qubits and demonstrate the algorithm on a two-qubit IBM cloud quantum computing device. We then explore an alternative to adiabatic evolution, the Rodeo Algorithm, which offers a different approach to eigenstate preparation by using a controlled quantum evolution that selectively filters out undesired components in the wave function stored on a quantum register. We show results suggesting that this method can be effective in preparing eigenstates, but its practicality is predicated on the preparation of an initial state that has significant overlap with the desired eigenstate. To address this, we introduce the novel Variational Rodeo Algorithm, which replaces the initialization step with dynamic optimization of quantum circuit parameters to increase the success probability of the Rodeo Algorithm. The added flexibility compensates for instances in which the original algorithm can be unsuccessful, allowing for better scalability. This research seeks to contribute to a deeper understanding of how quantum algorithms can be employed to attain efficient and accurate solutions to eigenvalue problems. The overarching goal is to present ideas that can be used to improve understanding of nuclear physics by providing potential quantum and classical techniques that can aid in tasks such as the theoretical description of nuclear structures and the simulation of nuclear reactions. 
    more » « less
  2. Abstract This paper is concerned with the phase estimation algorithm in quantum computing, especially the scenarios where (1) the input vector is not an eigenvector; (2) the unitary operator is approximated by Trotter or Taylor expansion methods; (3) random approximations are used for the unitary operator. We characterize the probability of computing the phase values in terms of the consistency error, including the residual error, Trotter splitting error, or statistical mean-square error. In the first two cases, we show that in order to obtain the phase value with error less or equal to 2 − n and probability at least 1 − ϵ , the required number of qubits is t ⩾ n + log 2 + δ 2 2 ϵ Δ E 2 . The parameter δ quantifies the error associated with the inexact eigenvector and/or the unitary operator, and Δ E characterizes the spectral gap, i.e., the separation from the rest of the phase values. This analysis generalizes the standard result (Cleve et al 1998 Phys. Rev X 11 011020; Nielsen and Chuang 2002 Quantum Computation and Quantum Information ) by including these effects. More importantly, it shows that when δ < Δ E , the complexity remains the same. For the third case, we found a similar estimate, but the number of random steps has to be sufficiently large. 
    more » « less
  3. We present a comparison of different quantum state preparation algorithms and their overall efficiency for the Schwinger model with a theta term. While adiabatic state preparation is proved to be effective, in practice it leads to large gate counts to prepare the ground state. The quantum approximate optimization algorithm (QAOA) provides excellent results while keeping the counts small by design, at the cost of an expensive classical minimization process. We introduce a “blocked” modification of the Schwinger Hamiltonian to be used in the QAOA that further decreases the length of the algorithms as the size of the problem is increased. The rodeo algorithm (RA) provides a powerful tool to efficiently prepare any eigenstate of the Hamiltonian, as long as its overlap with the initial guess is large enough. We obtain the best results when combining the blocked QAOA ansatz and the RA, as this provides an excellent initial state with a relatively short algorithm without the need to perform any classical steps for large problem sizes. Published by the American Physical Society2025 
    more » « less
  4. Semidefinite programs are optimization methods with a wide array of applications, such as approximating difficult combinatorial problems. We introduce a variational quantum algorithm for semidefinite programs that uses only n qubits, a constant number of circuit preparations, and O(n2) expectation values in order to solve semidefinite programs with up to N=2n variables and M=2n constraints. Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit, a technique known as the Hadamard Test. The Hadamard Test enables us to optimize the objective function by estimating only a single expectation value of the ancilla qubit, rather than separately estimating exponentially many expectation values. Similarly, we illustrate that the semidefinite programming constraints can be effectively enforced by implementing a second Hadamard Test, as well as imposing ∼n2/2 Pauli string amplitude constraints. We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm, which is a useful approximation for various NP-hard problems, such as MaxCut. Our method exceeds the performance of analogous classical methods on a diverse subset of well-studied MaxCut problems from the GSet library. 
    more » « less
  5. Semidefinite programs are optimization methods with a wide array of applications, such as approximating difficult combinatorial problems. One such semidefinite program is the Goemans-Williamson algorithm, a popular integer relaxation technique. We introduce a variational quantum algorithm for the Goemans-Williamson algorithm that uses only n + 1 qubits, a constant number of circuit preparations, and poly ( n ) expectation values in order to approximately solve semidefinite programs with up to N = 2 n variables and M O ( N ) constraints. Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit, a technique known as the Hadamard Test. The Hadamard Test enables us to optimize the objective function by estimating only a single expectation value of the ancilla qubit, rather than separately estimating exponentially many expectation values. Similarly, we illustrate that the semidefinite programming constraints can be effectively enforced by implementing a second Hadamard Test, as well as imposing a polynomial number of Pauli string amplitude constraints. We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems, including MaxCut. Our method exceeds the performance of analogous classical methods on a diverse subset of well-studied MaxCut problems from the GSet library. 
    more » « less