Mapping fermionic operators to qubit operators is an essential step for simulating fermionic systems on a quantum computer. We investigate how the choice of such a mapping interacts with the underlying qubit connectivity of the quantum processor to enable (or impede) parallelization of the resulting Hamiltonian-simulation algorithm. It is shown that this problem can be mapped to a path coloring problem on a graph constructed from the particular choice of encoding fermions onto qubits and the fermionic interactions onto paths. The basic version of this problem is called the weak coloring problem. Taking into account the fine-grained details of the mapping yields what is called the strong coloring problem, which leads to improved parallelization performance. A variety of illustrative analytical and numerical examples are presented to demonstrate the amount of improvement for both weak and strong coloring-based parallelizations. Our results are particularly important for implementation on near-term quantum processors where minimizing circuit depth is necessary for algorithmic feasibility.
more »
« less
This content will become publicly available on November 25, 2025
Advances in Simulating Fermions on a Quantum Computer
One of the principal challenges in simulating fermions on a quantum computer is that qubits lack the anti-symmetry of fermions. The simplest solution, the Jordan-Wigner transformation, converts local interactions into non-local ones. I will describe a method based on Majorana fermions that preserves locality, and propose some improvements to it that reduce the CNOT gate cost and make the algorithm more suited to simulating nuclear matter. I will also suggest how a perturbation theory-based approach can be useful for studies in nuclear physics. Finally, I will discuss contributions I have made involving time fractals and quantum algorithms such as the rodeo algorithm, an eigenvalue estimation algorithm that can obtain precise results even on noisy quantum computers.
more »
« less
- Award ID(s):
- 2310620
- PAR ID:
- 10599344
- Publisher / Repository:
- Michigan State University
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)We present an efficient quantum algorithm for simulating the dynamics of Markovian open quantum systems. The performance of our algorithm is similar to the previous state-of-the-art quantum algorithm, i.e., it scales linearly in evolution time and poly-logarithmically in inverse precision. However, our algorithm is conceptually cleaner, and it only uses simple quantum primitives without compressed encoding. Our approach is based on a novel mathematical treatment of the evolution map, which involves a higher-order series expansion based on Duhamel’s principle and approximating multiple integrals using scaled Gaussian quadrature. Our method easily generalizes to simulating quantum dynamics with time-dependent Lindbladians. Furthermore, our method of approximating multiple integrals using scaled Gaussian quadrature could potentially be used to produce a more efficient approximation of time-ordered integrals, and therefore can simplify existing quantum algorithms for simulating time-dependent Hamiltonians based on a truncated Dyson series.more » « less
-
This thesis investigates quantum algorithms for eigenstate preparation, with a primary focus on solving eigenvalue problems such as the Schrodinger equation by utilizing near-term quantum computing devices. These problems are ubiquitous in several scientific fields, but more accurate solutions are specifically needed as a prerequisite for many quantum simulation tasks. To address this, we establish three methods in detail: quantum adiabatic evolution with optimal control, the Rodeo Algorithm, and the Variational Rodeo Algorithm.The first method explored is adiabatic evolution, a technique that prepares quantum states by simulating a quantum system that evolves slowly over time. The adiabatic theorem can be used to ensure that the system remains in an eigenstate throughout the process, but its implementation can often be infeasible on current quantum computing hardware. We employ a unique approach using optimal control to create custom gate operations for superconducting qubits and demonstrate the algorithm on a two-qubit IBM cloud quantum computing device. We then explore an alternative to adiabatic evolution, the Rodeo Algorithm, which offers a different approach to eigenstate preparation by using a controlled quantum evolution that selectively filters out undesired components in the wave function stored on a quantum register. We show results suggesting that this method can be effective in preparing eigenstates, but its practicality is predicated on the preparation of an initial state that has significant overlap with the desired eigenstate. To address this, we introduce the novel Variational Rodeo Algorithm, which replaces the initialization step with dynamic optimization of quantum circuit parameters to increase the success probability of the Rodeo Algorithm. The added flexibility compensates for instances in which the original algorithm can be unsuccessful, allowing for better scalability. This research seeks to contribute to a deeper understanding of how quantum algorithms can be employed to attain efficient and accurate solutions to eigenvalue problems. The overarching goal is to present ideas that can be used to improve understanding of nuclear physics by providing potential quantum and classical techniques that can aid in tasks such as the theoretical description of nuclear structures and the simulation of nuclear reactions.more » « less
-
Abstract To achieve universal quantum computation via general fault-tolerant schemes, stabilizer operations must be supplemented with other non-stabilizer quantum resources. Motivated by this necessity, we develop a resource theory for magic quantum channels to characterize and quantify the quantum ‘magic’ or non-stabilizerness of noisy quantum circuits. For qudit quantum computing with odd dimensiond, it is known that quantum states with non-negative Wigner function can be efficiently simulated classically. First, inspired by this observation, we introduce a resource theory based on completely positive-Wigner-preserving quantum operations as free operations, and we show that they can be efficiently simulated via a classical algorithm. Second, we introduce two efficiently computable magic measures for quantum channels, called the mana and thauma of a quantum channel. As applications, we show that these measures not only provide fundamental limits on the distillable magic of quantum channels, but they also lead to lower bounds for the task of synthesizing non-Clifford gates. Third, we propose a classical algorithm for simulating noisy quantum circuits, whose sample complexity can be quantified by the mana of a quantum channel. We further show that this algorithm can outperform another approach for simulating noisy quantum circuits, based on channel robustness. Finally, we explore the threshold of non-stabilizerness for basic quantum circuits under depolarizing noise.more » « less
-
For a system without spin–orbit coupling, the (i) nuclear plus electronic linear momentum and (ii) nuclear plus orbital electronic angular momentum are good quantum numbers. Thus, when a molecular system undergoes a nonadiabatic transition, there should be no change in the total linear or angular momentum. Now, the standard surface hopping algorithm ignores the electronic momentum and indirectly equates the momentum of the nuclear degrees of freedom to the total momentum. However, even with this simplification, the algorithm still does not conserve either the nuclear linear or the nuclear angular momenta. Here, we show that one way to address these failures is to dress the derivative couplings (i.e., the hopping directions) in two ways: (i) we disallow changes in the nuclear linear momentum by working in a translating basis (which is well known and leads to electron translation factors) and (ii) we disallow changes in the nuclear angular momentum by working in a basis that rotates around the center of mass [which is not well-known and leads to a novel, rotationally removable component of the derivative coupling that we will call electron rotation factors below, cf. Eq. (96)]. The present findings should be helpful in the short term as far as interpreting surface hopping calculations for singlet systems (without spin) and then developing the new surface hopping algorithm in the long term for systems where one cannot ignore the electronic orbital and/or spin angular momentum.more » « less
An official website of the United States government
