With the increasing integration of cyber-physical systems (CPS) into critical applications, ensuring their resilience against cyberattacks is paramount. A particularly concerning threat is the vulnerability of CPS to deceptive attacks that degrade system performance while remaining undetected. This article investigates perfectly undetectable false data injection attacks (FDIAs) targeting the trajectory tracking control of a nonholonomic mobile robot. The proposed attack method utilizes affine transformations of intercepted signals, exploiting weaknesses inherent in the partially linear dynamic properties and symmetry of the nonlinear plant. The feasibility and potential impact of these attacks are validated through experiments using a Turtlebot 3 platform, highlighting the urgent need for sophisticated detection mechanisms and resilient control strategies to safeguard CPS against such threats. Furthermore, a novel approach for detection of these attacks called the state monitoring signature function (SMSF) is introduced. An example SMSF, a carefully designed function resilient to FDIA, is shown to be able to detect the presence of an FDIA through signatures based on system states.
more »
« less
An Unsupervised Approach to Enhance Cyber Resiliency of Power Systems Against False Data Injection Attacks on Voltage Stability
The digital transformation of power system introduces False Data Injection Attacks (FDIAs) on voltage stability that compromises the operational integrity of power grids. Existing detection mechanisms for FDIAs often fall short as they overlook the complexities of cyberattacks targeting voltage stability and rely on outdated models that do not capture the dynamic interplay between power system operations and potential threats. In response to these gaps, this paper proposes a novel FDIA detection method designed specifically for voltage regulation vulnerabilities, aiming to enhance the voltage stability index. The proposed method utilizes an unsupervised learning framework capable of identifying cyberattacks targeting voltage regulation. A bi-level optimization approach is put forward to concurrently optimize the objectives of both attackers and defenders in the context of voltage regulation. The effectiveness of this approach is validated through comprehensive training and testing on a variety of attack scenarios, demonstrating superior generalization across different conditions. Extensive simulations on the Iberian power system topology, with 486 buses, show that the proposed model achieves more than 93% detection rate. These results highlight the robustness and efficacy of the proposed strategy in strengthening the cyber resilience of power systems against sophisticated FDIA threats on voltage stability.
more »
« less
- PAR ID:
- 10599631
- Publisher / Repository:
- International Journal of Electrical and Electronic Engineering & Telecommunications
- Date Published:
- Journal Name:
- International Journal of Electrical and Electronic Engineering & Telecommunications
- Volume:
- 14
- Issue:
- 2
- ISSN:
- 2319-2518
- Page Range / eLocation ID:
- 88 to 93
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper proposes an on-line remedial action scheme (OLRAS) in order to mitigate the voltage violations caused by false data injection attacks (FDIAs) targeting under load tap changing (ULTC) transformers in smart distribution systems. The FDIA framework contains two different phases. In the attack phase, distribution system operator (DSO), being in attacker's shoe, considers cyberattack scenarios through compromising the results of volt-var optimization problem in a radial distribution grid modified with distributed energy resources (DERs) such as photovoltaic (PV) units and wind turbines (WTs). The outcome of the attack phase will be the compromised voltage profile of the distribution grid showing different rates of voltage violations. In the reaction phase, the DSO rapidly identifies a customized distribution feeder reconfiguration (CDFR) in order to update the flows of active and reactive power throughout the targeted distribution system and recover the voltage profile. The objective functions of the proposed CDFR are defined to minimize the impacts of such cyberattacks targeting ULTCs within distribution grids. This will empower DSOs to react to severe cyberattacks, bypassing the detection stage, and address the voltage violations in a timely manner. The effectiveness of the proposed OLRAS is validated on an IEEE test system.more » « less
-
This article investigates the impacts of coordinated false data injection attacks (FDIAs) on voltage profiles in smart microgrids integrated with renewable-based distributed energy resources (DERs), a critical component of urban energy infrastructure in smart cities. By leveraging simulation and experimental methods, a coordinated framework is developed for understanding and mitigating these threats, ensuring the stability of renewable-based DERs integral to modern urban systems. In the examined framework, a team of attackers independently identify the optimal times of two different cyberattacks leading to undervoltage and overvoltage in a smart microgrid. The objective function of each model is to increase the voltage violation in the form of either overvoltage or undervoltage caused by the corresponding FDIA. In such a framework, the attackers design a multi-objective optimization problem (MOOP) simultaneously resulting in voltage violations in the most vulnerable regions of the targeted microgrid. Considering the conflict between objective functions in the developed MOOP, a Pareto-based solution methodology is utilized to obtain a set of optimal solutions, called non-dominated solutions, as well as the best compromise solution (BCS). The effectiveness of the unified FDIA is verified based on simulation and experimental validations. In this regard, the IEEE 13-node test feeder has been modified as a microgrid for the simulation analysis, whereas the experimental validation has been performed on a lab-scale hybrid PV/wind microgrid containing renewable energy resources.more » « less
-
This work is to present a learning observer-based method for simultaneous detection and estimation of false data injection attacks (FDIAs) to the cyber-physical battery systems. The original battery system in a state-space formulation is transformed into two separate subsystems: one contains both disturbances and the FDIAs and the second one is free from disturbances but subject to FDIAs. A learning observer is then designed for the second subsystem such that the FDIA signals can be estimated and further detected without being affected by the disturbances. This makes the proposed learning observer-based detection and estimation method is robust to disturbances and false declaration of FDIAs can be avoided. Another advantage of the proposed method is that the computing load is low because of the design of a reduced-order learning observer. With a three-cell battery string, a simulation study is employed to verify the effectiveness of proposed detection and estimation method for the FDIAs.more » « less
-
False data injection (FDI) attacks targeting under-load tap changing (ULTC) transformers pose a significant threat to smart distribution networks by exploiting vulnerabilities in the volt-var optimization (VVO) process, leading to potential undervoltage and voltage collapse. The increased integration of renewable energy and cyber-physical systems has expanded the attack surface, making traditional detection methods inadequate. For example, in 2023, attacks on utilities and decentralized components in the United States rose by 200%, with overall cyber threats increasing by 104%, highlighting growing vulnerabilities in distribution systems. To this end, this article proposes a two-stage remediation framework for decentralized FDI (DFDI) attacks targeting ULTC transformers. In the attack stage, vulnerabilities in ULTCs and voltage regulators are scrutinized, risking voltage collapse or blackouts in the distribution system. In the remediation stage, the distribution system operator focuses on non-attacked ULTCs, voltage regulators, distributed generation (DG) units, and smart homes to minimize reliance on compromised components. In this regard, a distinctive formulation of distribution network resilience and load management (DNRLM) problem is introduced to identify a resilient network topology and determine a situational power balance strategy. The proposed framework focuses on minimizing the system's reliance on the attacked ULTCs and voltage regulator components, thereby avoiding the intended voltage collapse caused by such DFDIs. The simulation results verify that the proposed method reduces the voltage collapse proximity index by over 60%, enhancing system resilience under DFDI attacks.more » « less
An official website of the United States government

