COVID‐19 greatly increased the online delivery of higher education. But one limitation of online learning is that students often struggle to stay engaged while watching online lectures. We examined whether including an instructor's face in lecture videos (instructor visibility) enhances student engagement or learning. In two preregistered experiments, we found that instructor visibility in lecture videos did not affect either engagement or learning overall. However, participants reported higher engagement when they watched a video that aligned with their preference for instructor visibility. For example, participants who favored videos with the instructor visible reported greater engagement with such videos compared to those without the instructor, and vice versa. Additionally, we examined the effects of playback speed on engagement and learning. Our results suggest that speeded playing did not impact engagement but resulted in better learning efficiency. Lastly, using GPT, we explored participants' open‐ended responses to understand their preference for video lectures. 
                        more » 
                        « less   
                    This content will become publicly available on June 10, 2026
                            
                            An Empirical Evaluation of Active Live Coding in CS1
                        
                    
    
            Objectives The traditional, instructor-led form of live coding has been extensively studied, with findings showing that this form of live coding imparts similar learning to static-code examples. However, a concern with Traditional Live Coding is that it can turn into a passive learning activity for students as they simply observe the instructor program. Therefore, this study compares Active Live Coding—a form of live coding that leverages in-class coding activities and peer discussion—to Traditional Live Coding on three outcomes: 1) students’ adherence to effective programming processes, 2) students’ performance on exams and in-lecture questions, and 3) students’ lecture experience. Participants Roughly 530 students were enrolled in an advanced, CS1 course taught in Java at a large, public university in North America. The students were primarily first- and second-year undergraduate students with some prior programming experience. The student population was spread across two lecture sections—348 students in the Active Live Coding (ALC) lecture and 185 students in the Traditional Live Coding (TLC) lecture. Study Methods We used a mixed-methods approach to answer our‘ research questions. To compare students’ programming processes, we applied process-oriented metrics related to incremental development and error frequencies. To measure students’ learning outcomes, we compared students’ performance on major course components and used pre- and post-lecture questionnaires to compare students’ learning gain during lectures. Finally, to understand students’ lecture experience, we used a classroom observation protocol to measure and compare students’ behavioral engagement during the two lectures. We also inductively coded open-ended survey questions to understand students’ perceptions of live coding. Findings We did not find a statistically significant effect of ALC on students’ programming processes or learning outcomes. It seems that both ALC and TLC impart similar programming processes and result in similar student learning. However, our findings related to students’ lecture experience shows a persistent engagement effect of ALC, where students’ behavioral engagement peaks andremains elevatedafter the in-class coding activity and peer discussion. Finally, we discuss the unique affordances and drawbacks of the lecture technique as well as students’ perceptions of ALC. Conclusions Despite being motivated by well-established learning theories, Active Live Coding did not result in improved student learning or programming processes. This study is preceded by several prior works that showed that Traditional Live Coding imparts similar student learning and programming skills as static-code examples. Though potential reasons for the lack of observed learning benefits are discussed in this work, multiple future analyses to further investigate Active Live Coding may help the community understand the impacts (or lack thereof) of the instructional technique. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2044473
- PAR ID:
- 10599712
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Computing Education
- ISSN:
- 1946-6226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction.more » « less
- 
            Numerous studies have shown that active learning and student-centered pedagogies lead to better student outcomes, such as higher grades, enhanced self-efficacy, and an increased sense of belonging. These outcomes are closely linked to higher levels of student engagement. To better understand the relationship between student engagement and pedagogical approach, our research documents what actually happens in CS1 classes that implement active learning. This paper presents a case study of two instructors, at different undergraduate institutions, teaching with Process Oriented Guided Inquiry Learning (POGIL) and Interactive Lectures. Using structured classroom observations and student surveys, we measure the engagement of the same students in different class periods taught by the same instructor. Our study investigates the differences and similarities in self-reported and observed student behaviors, as well as observed instructor behaviors. We examine how instructor behavior impacts student behavior. The results show significant differences in observed instructor and student behaviors based on the pedagogical approach. In class periods where instructors spoke more, students were more inclined to watch or listen rather than actively work or discuss, coupled with higher levels of student distraction. Our results provide insight into how specific teaching practices can lead to more engaging classrooms and better student outcomes.more » « less
- 
            Abstract BackgroundActive learning, on average, increases student performance in STEM courses. Yet, there is also large variation in the effectiveness of these implementations. A consistent goal of active learning is moving students towards becoming active constructors of their knowledge. This emphasis means student engagement is of central importance. Thus, variation in student engagement could help explain variation in outcomes from active learning. In this study, we employ Pekrun’s Control–Value Theory to examine the impact of four aspects of course social and cultural environments on student engagement. This theory posits that social and cultural features of the course environment influence students’ appraisals of their ability to control their academic outcomes from the course and the value they see in those outcomes. Control and value in turn influence the emotions students experience in the course and their behaviors. We selected four features of the course environment suggested in the literature to be important in active learning courses: course goal structure, relevance of course content, students’ trust in their instructor, and perceived course competition. ResultsWe surveyed students in 13 introductory STEM courses. We used structural equation modeling to map how features of the course environment related to control, value, and academic emotions, as well as how control, value, and academic emotions influenced engagement. We found engagement was positively related to control and value as well as the emotion of curiosity. Engagement was negatively related to the emotion of boredom. Importantly, features of the course environment influenced these four variables. All features influenced control: goal structure, relevance, and instructor trust increased it, while competition decreased it. All features except competition were related positively to value. Relevance and instructor trust increased curiosity. Goal structure, relevance, and instructor trust all reduced boredom, while competition increased it. ConclusionOverall, our study suggests that the way instructors structure the social and cultural environment in active learning courses can impact engagement. Building positive instructor–student relationships, reducing course competition, emphasizing mastery and the relevance of the course to students can all increase engagement in course activities.more » « less
- 
            Calculus, the study of change in processes and systems, serves as the foundation for many STEM disciplines. Traditional, lecture-based calculus instruction may present a barrier for students seeking STEM degrees, limit their access to STEM professions, and block their potential to address society’s challenges. A large-scale pragmatic trial with randomized student allocation was conducted to compare two calculus instruction styles: active student engagement (treatment condition) versus traditional, lecture-based instruction (control condition). A sample of 811 university students were studied across 32 sections taught by 19 instructors over three semesters at a large, US-based Hispanic-serving institution. Large effect sizes were consistently measured for student learning outcomes in the treatment condition, which demonstrates a new standard for calculus instruction and increased opportunities for completion of STEM degrees.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
