skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Regeneration and defense: unveiling the molecular interplay in plants
Summary In both plants and animals, tissue or organ regeneration typically follows wounding, which also activates defense responses against pathogenic microbes and herbivores. Both intrinsic and environmental cues guide the molecular decisions between regeneration and defense. In animal studies, extensive research has highlighted the role of various microbes – including pathogenic, commensal, and beneficial species – in influencing the signaling interplay between immunity and regeneration. Conversely, most plant regeneration studies are conducted under sterile conditions, which leaves a gap in our understanding of how plant innate immunity influences regeneration pathways. Recent findings have begun to elucidate the roles of key defense pathways in modulating plant regeneration and the crosstalk between these two processes. These studies also explore how microbes might influence the molecular choice between defense and regeneration in plants. This review examines the molecular mechanisms governing the balance between plant regeneration and innate immunity, with a focus on the emerging role of aging and microbial interactions in shaping these processes.  more » « less
Award ID(s):
2039313
PAR ID:
10599860
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
246
Issue:
6
ISSN:
0028-646X
Format(s):
Medium: X Size: p. 2484-2494
Size(s):
p. 2484-2494
Sponsoring Org:
National Science Foundation
More Like this
  1. Unlike animals, plants do not have specialized immune cells and lack an adaptive immune system. Instead, plant cells rely on their unique innate immune system to defend against pathogens and coordinate beneficial interactions with commensal and symbiotic microbes. One of the major convergent points for plant immune signaling is the nucleus, where transcriptome reprogramming is initiated to orchestrate defense responses. Mechanisms that regulate selective transport of nuclear signaling cargo and chromatin activity at the nuclear boundary play a pivotal role in immune activation. This review summarizes the current knowledge of how nuclear membrane-associated core protein and protein complexes, including the nuclear pore complex, nuclear transport receptors, and the nucleoskeleton participate in plant innate immune activation and pathogen resistance. We also discuss the role of their functional counterparts in regulating innate immunity in animals and highlight potential common mechanisms that contribute to nuclear membrane-centered immune regulation in higher eukaryotes. 
    more » « less
  2. Communication between plant cells and interacting microorganisms requires the secretion and uptake of functional molecules to and from the extracellular environment and is essential for the survival of both plants and their pathogens. Extracellular vesicles (EVs) are lipid bilayer–enclosed spheres that deliver RNA, protein, and metabolite cargos from donor to recipient cells and participate in many cellular processes. Emerging evidencehas shown that both plant and microbial EVs play important roles in cross-kingdom molecular exchange between hosts and interacting microbes to modulate host immunity and pathogen virulence. Recent studies revealed that plant EVs function as a defense system by encasing and delivering small RNAs (sRNAs) into pathogens, thereby mediating cross-species and cross-kingdom RNA interference to silence virulence-related genes. This review focuses on the latest advances in our understanding of plant and microbial EVs and their roles in transporting regulatory molecules, especially sRNAs, between hosts and pathogens. EV biogenesis and secretion are also discussed, as EV function relies on these important processes. 
    more » « less
  3. ABSTRACT Plants recognize a variety of environmental molecules, thereby triggering appropriate responses to biotic or abiotic stresses. Substances containing microbes-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs) are representative inducers of pathogen resistance and damage repair, thus treatment of healthy plants with such substances can pre-activate plant immunity and cell repair functions. In this study, the effects of DAMP/MAMP oligosaccharides mixture (Oligo-Mix) derived from plant cell wall (cello-oligosaccharide and xylo-oligosaccharide), and fungal cell wall (chitin-oligosaccharide) were examined in cucumber. Treatment of cucumber with Oligo-Mix promoted root germination and plant growth, along with increased chlorophyll contents in the leaves. Oligo-Mix treatment also induced typical defense responses such as MAP kinase activation and callose deposition in leaves. Pretreatment of Oligo-Mix enhanced disease resistance of cucumber leaves against pathogenic fungiPodosphaera xanthii(powdery mildew) andColletotrichum orbiculare(anthracnose). Oligo-Mix treatment increased the induction of hypersensitive cell death around the infection site of pathogens, which inhibited further infection and the conidial formation of pathogens on the cucumber leaves. RNA-seq analysis revealed that Oligo-Mix treatment upregulated genes associated with plant structural reinforcement, responses to abiotic stresses and plant defense. These results suggested that Oligo-Mix has beneficial effects on growth and disease resistance in cucumber, making it a promising biostimulant for agricultural application. 
    more » « less
  4. Abstract The plant immune response plays a central role in maintaining a well-balanced and healthy microbiome for plant health. However, insights into how the fruit immune response and the fruit microbiome influence fruit health after harvest are limited. We investigated the temporal dynamics of the fruit microbiota and host defense gene expression patterns during postharvest storage of apple fruits at room temperature. Our results demonstrate a temporal dynamic shift in both bacterial and fungal community composition during postharvest storage that coincides with a steep-decline in host defense response gene expression associated with pattern-triggered immunity. We observed the gradual appearance of putative pathogenic/spoilage microbes belonging to genera Alternaria (fungi) and Gluconobacter and Acetobacter (bacteria) at the expense of Sporobolomyces and other genera, which have been suggested to be beneficial for plant hosts. Moreover, artificial induction of pattern-triggered immunity in apple fruit with the flg22 peptide delayed the onset of fruit rot caused by the fungal pathogen Penicillium expansum. Our results suggest that the fruit immune response helps to orchestrate a microbiome and that the collapse of the immunity results in the proliferation of spoilage microbes and fruit rot. These findings hold implications for the development of strategies to increase fruit quality and prolong shelf life in fruits and vegetables. 
    more » « less
  5. Plant-microbe interactions are critical to ecosystem resilience and substantially influence crop production. From the perspective of plant science, two important focus areas concerning plant-microbe interactions include: 1) understanding plant molecular mechanisms involved in plant-microbe interfaces and 2) engineering plants for increasing plant disease resistance or enhancing beneficial interactions with microbes to increase their resilience to biotic and abiotic stress conditions. Molecular biology and genetics approaches have been used to investigate the molecular mechanisms underlying plant responses to various beneficial and pathogenic microbes. While these approaches are valuable for elucidating the functions of individual genes and pathways, they fall short of unraveling the complex cross-talk across pathways or systems that plants employ to respond and adapt to environmental stresses. Also, genetic engineering of plants to increase disease resistance or enhance symbiosis with microbes has mainly been attempted or conducted through targeted manipulation of single genes/pathways of plants. Recent advancements in synthetic biology tool development are paving the way for multi-gene characterization and engineering in plants in relation to plant-microbe interactions. Here, we briefly summarize the current understanding of plant molecular pathways involved in plant interactions with beneficial and pathogenic microorganisms. Then, we highlight the progress in applying plant synthetic biology to elucidate the molecular basis of plant responses to microbes, enhance plant disease resistance, engineer synthetic symbiosis, and conduct in situ microbiome engineering. Lastly, we discuss the challenges, opportunities, and future directions for advancing plant-microbe interactions research using the capabilities of plant synthetic biology. 
    more » « less