skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Sucrose-responsive osmoregulation of plant cell size by a long non-coding RNA
In plants, sugars are the key source of energy and metabolic building blocks. The systemic transport of sugars is essential for plant growth and morphogenesis. Plants evolved intricate molecular networks to effectively distribute sugars. The dynamic distribution of these osmotically active compounds is a handy tool for regulating cell turgor pressure, an instructive force in developmental biology. In this study, we have investigated the molecular mechanism behind the dual role of the receptor-like kinase CANAR. We functionally characterized a long non-coding RNA, CARMA, as a negative regulator of CANAR. Sugar-responsive CARMA specifically fine-tunes CANAR expression in the phloem, the route of sugar transport. Our genetic, molecular, microscopy, and biophysical data suggest that the CARMA–CANAR module controls the shoot-to-root phloem transport of sugars, allows cells to flexibly adapt to the external osmolality by appropriate water uptake, and thus adjust the size of vascular cell types during organ growth and development. Our study identifies a nexus of plant vascular tissue formation with cell internal pressure monitoring, revealing a novel functional aspect of long non-coding RNAs in developmental biology.  more » « less
Award ID(s):
1751385
PAR ID:
10599951
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Cell Press
Date Published:
Journal Name:
Molecular Plant
Volume:
17
Issue:
11
ISSN:
1674-2052
Page Range / eLocation ID:
1719 to 1732
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Plants integrate a variety of biotic and abiotic factors for optimal growth in their given environment. While some of these responses are local, others occur distally. Hence, communication of signals perceived in one organ to a second, distal part of the plant and the coordinated developmental response require an intricate signaling system. To do so, plants developed a bipartite vascular system that mediates the uptake of water, minerals, and nutrients from the soil; transports high-energy compounds and building blocks; and traffics essential developmental and stress signals. One component of the plant vasculature is the phloem. The development of highly sensitive mass spectrometry and molecular methods in the last decades has enabled us to explore the full complexity of the phloem content. As a result, our view of the phloem has evolved from a simple transport path of photoassimilates to a major highway for pathogens, hormones and developmental signals. Understanding phloem transport is essential to comprehend the coordination of environmental inputs with plant development and, thus, ensure food security. This review discusses recent developments in its role in long-distance signaling and highlights the role of some of the signaling molecules. What emerges is an image of signaling paths that do not just involve single molecules but rather, quite frequently an interplay of several distinct molecular classes, many of which appear to be transported and acting in concert. 
    more » « less
  2. Abstract Current practices for delivering agrochemicals are inefficient, with only a fraction reaching the intended targets in plants. The surfaces of nanocarriers are functionalized with sucrose, enabling rapid and efficient foliar delivery into the plant phloem, a vascular tissue that transports sugars, signaling molecules, and agrochemicals through the whole plant. The chemical affinity of sucrose molecules to sugar membrane transporters on the phloem cells enhances the uptake of sucrose‐coated quantum dots (sucQD) and biocompatible carbon dots with β‐cyclodextrin molecular baskets (suc‐β‐CD) that can carry a wide range of agrochemicals. The QD and CD fluorescence emission properties allowed detection and monitoring of rapid translocation (<40 min) in the vasculature of wheat leaves by confocal and epifluorescence microscopy. The suc‐β‐CDs more than doubled the delivery of chemical cargoes into the leaf vascular tissue. Inductively coupled plasma mass spectrometry (ICP‐MS) analysis showed that the fraction of sucQDs loaded into the phloem and transported to roots is over 6.8 times higher than unmodified QDs. The sucrose coating of nanoparticles approach enables unprecedented targeted delivery to roots with ≈70% of phloem‐loaded nanoparticles delivered to roots. The use of plant biorecognition molecules mediated delivery provides an efficient approach for guiding nanocarriers containing agrochemicals to the plant vasculature and whole plants. 
    more » « less
  3. Abstract Understanding mass transport of photosynthates in the phloem of plants is necessary for predicting plant carbon allocation, productivity, and responses to water and thermal stress. Several hypotheses about optimization of phloem structure and function and limitations of phloem transport under drought have been proposed and tested with models and anatomical data. However, the true impact of radial water exchange of phloem conduits with their surroundings on mass transport of photosynthates has not been addressed. Here, the physics of the Munch mechanism of sugar transport is re-evaluated to include local variations in viscosity resulting from the radial water exchange in two dimensions (axial and radial) using transient flow simulations. Model results show an increase in radial water exchange due to a decrease in sap viscosity leading to increased sugar front speed and axial mass transport across a wide range of phloem conduit lengths. This increase is around 40% for active loaders (e.g. crops) and around 20% for passive loaders (e.g. trees). Thus, sugar transport operates more efficiently than predicted by previous models that ignore these two effects. A faster front speed leads to higher phloem resiliency under drought because more sugar can be transported with a smaller pressure gradient. 
    more » « less
  4. ABSTRACT Mineral nutrients are essential for plant growth, development and crop yield. Under mineral deficient conditions, plants rely on a sophisticated network of signalling pathways to coordinate their molecular, physiological, and morphological responses. Recent research has shown that long‐distance signalling pathways play a pivotal role in maintaining mineral homeostasis and optimising growth. This review explores the intricate mechanisms of long‐distance signalling under mineral deficiencies, emphasising its importance as a communication network between roots and shoots. Through the vascular tissues, plants transport an array of signalling molecules, including phytohormones, small RNAs, proteins, small peptides, and mobile mRNAs, to mediate systemic responses. Vascular tissues, particularly companion cells, are critical hubs for sensing and relaying mineral deficiency signals, leading to rapid changes in mineral uptake and optimised root morphology. We highlight the roles of key signalling molecules in regulating mineral acquisition and stress adaptation. Advances in molecular tools, including TRAP‐Seq, heterografting, and single‐cell RNA sequencing, have recently unveiled novel aspects of long‐distance signalling and its regulatory components. These insights underscore the essential role of vascular‐mediated communication in enabling plants to navigate heterogeneous mineral distribution environments and suggest new avenues for improving crop resilience and mineral use efficiency. 
    more » « less
  5. Sugar translocation between cells and between subcellular compartments in plants requires either plasmodesmata or a diverse array of sugar transporters. Interactions between plants and associated microorganisms also depend on sugar transporters. The sugars will eventually be exported transporter (SWEET) family is made up of conserved and essential transporters involved in many critical biological processes. The functional significance and small size of these proteins have motivated crystallographers to successfully capture several structures of SWEETs and their bacterial homologs in different conformations. These studies together with molecular dynamics simulations have provided unprecedented insights into sugar transport mechanisms in general and into substrate recognition of glucose and sucrose in particular. This review summarizes our current understanding of the SWEET family, from the atomic to the whole-plant level. We cover methods used for their characterization, theories about their evolutionary origins, biochemical properties, physiological functions, and regulation. We also include perspectives on the future work needed to translate basic research into higher crop yields. 
    more » « less