skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Experimental investigation and modeling of CO2-Water Co-Sorption isotherms on a Moisture-Swing sorbent for CO2 Direct air capture
Anion exchange materials (AEMs) containing quaternary ammonium groups with charge balancing alkaline anions have shown promise for CO2 direct air capture (DAC), particularly under low-humidity conditions. These materials can be regenerated by increasing water activity, leveraging the moisture swing (MS) effect. The regeneration step releases heat due to water sorption, providing an opportunity to develop an autothermal Vacuum Moisture Swing (aVMS) process that utilizes both a change in CO2 affinity due to moisture and the heat of water sorption for efficient atmospheric CO2 capture. In this work, the moisture-driven CO2 sorption was studied for the first time using dynamic column breakthrough (DCB) experiments and subsequent modeling of the obtained sorption isotherms. The results confirm that humidity significantly affects the shape and capacity of the CO2 isotherms. CO2 uptake increased sharply at lower relative humidity (RH), while temperature had a less pronounced effect, especially at higher RH. At 15 % RH, the CO2 loading saturates at 200 ppm, with maximum loads of 0.82 mmol/g at 25 °C and 0.64 mmol/g at 45 °C. However, at 80 % RH, the CO2 partial pressure required for saturation increases significantly, reaching 60,000 ppm, and the maximum loading drops below 0.4 mmol/g. Interestingly, under certain conditions, partial water desorption was observed during CO2 sorption, suggesting a complex interplay between the two molecules and the MS sorbent. In addition, the influence of sorbent form factor, flow rate and column geometry on the separation performance was investigated. These findings not only advance the understanding of the complex interaction between CO2 and water during moisture swing processes but also provide a basis for the engineering of a cost-effective aVMS process for CO2 DAC.  more » « less
Award ID(s):
2219247
PAR ID:
10600043
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Chemical Engineering Journal
Volume:
514
Issue:
C
ISSN:
1385-8947
Page Range / eLocation ID:
163024
Subject(s) / Keyword(s):
moisture swing co2 sorption breakthrough column
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study investigates the H2O and CO2 sorption behavior of two chemically distinct polystyrene-divinylbenzene-based ion exchange sorbents: a primary amine and a permanently charged strong base quaternary ammonium (QA+) group with (bi)carbonate counter anions. We compare their distinct interactions with H2O and CO2 through simultaneous thermal gravimetric, calorimetric, gas analysis, and molecular modeling approaches to evaluate their performance for dilute CO2 separations like direct air capture. Thermal and hybrid (heat + low-temperature hydration) desorption experiments demonstrate that the QA+-based sorbent binds both water and CO2 more strongly than the amine counterparts but undergoes degradation at moderate temperatures, limiting its compatibility with thermal swing regeneration. However, a low-temperature moisture-driven regeneration pathway is uniquely effective for the QA+-based sorbent. To inform the energetics of a moisture-based CO2 separation (i.e., a moisture swing), we compare calorimetric water sorption enthalpies to Clausius–Clapeyron-derived total isosteric enthalpies. To our knowledge, this includes the first direct calorimetric measurement of water sorption enthalpy in a QA+-based sorbent. Both methods reveal monolayer-multilayer sorption behavior for both sorbents, with the QA+-based material having slightly higher water sorption enthalpies at the initially occupied strongest sorption sites. Molecular modeling supports this observation, showing higher water sorption energies and denser charge distributions in the QA+-based sorbent at λH2O = 1 mmol/mmolsite. Mixed gas experiments in the QA+-based sorbent show that not only does water influence CO2 binding, but CO2 influences water uptake through counterion-dependent hydration states, and that moisture swing responsiveness in this material causes hydration-induced CO2 release and drying-induced CO2 uptake, an important feature for low-energy CO2 separation under ambient conditions. Overall, the two classes of sorbents offer distinct pathways for the CO2 separation. 
    more » « less
  2. Direct air capture (DAC) of CO2is an emerging technology in the battle against climate change. Many sorbent materials and different technologies such as moisture swing sorption have been explored for this application. However, developing efficient scaffolds to adopt promising sorbents with fast kinetics is challenging, and very limited effort has been reported to address this critical issue. In this work, the availability and kinetic uptake of CO2in sorbents embedded in various matrices are studied. Three scaffolds including a commercially available industrial film containing ion‐exchange resin (IER), IER particles embedded in dense electrospun fibers, and IER particles embedded in porous electrospun fibers are compared, in which a solvothermal polymer additive removal technique is used to create porosity in porous fibers. A frequency response technique is developed to measure the uptake capacity, sorbent availability, and kinetic uptake rate. The porous fiber has 90% IER availability, while the dense fibers have 50% particle accessibility. The sorption half time for both electrospun fiber samples is 10 ± 3 min. Our experimental results demonstrate that electrospinning polymer/sorbent composites is a promising technology to facilitate the handleability of sorbent particles and to improve the sorption kinetics, in which the IER embedded in porous electrospun fibers shows the highest cycle capacity with an uptake rate of 1.4 mol CO2per gram‐hour. © 2018 American Institute of Chemical EngineersAIChE J, 65: 214–220, 2019 
    more » « less
  3. CALF-20, a Zn-triazolate-based metal-organic framework (MOF), is one of the most promising adsorbent materials for CO2 capture. However, competitive adsorption of water severely limits its performance when the relative humidity (RH) exceeds 40%, limiting the potential implementation of CALF-20 in practical settings where CO2 is saturated with moisture, such as post-combustion flue gas. In this work, three newly designed MOFs related to CALF-20, denoted as NU-220, CALF-20M-w, and CALF-20M-e that feature hydrophobic methyl-triazolate linkers are presented. Inclusion of methyl groups in the linker is proposed as a strategy to improve CO2 uptake in the presence of water. Notably, both CALF-20M-w and CALF-20M-e retain over 20% of their initial CO2 capture efficiency at 70% RH – a threshold at which CALF-20 shows negligible CO2 uptake. Grand canonical Monte Carlo (GCMC) simulations reveal that the methyl group hinders water network formation in the pores of CALF-20M-w and CALF-20M-e and enhances their CO2 selectivity over N2 in the presence of high moisture content. Moreover, calculated radial distribution functions indicate that introducing the methyl group into the triazolate linker increases the distance between water molecules and Zn coordination bonds, offering insights into the origin of the enhanced moisture stability observed for CALF-20M-w and CALF-20M-e relative to CALF-20. Overall, this straightforward design strategy has afforded more robust sorbents that can potentially meet the challenge of effectively capturing CO2 in practical industrial applications. 
    more » « less
  4. The study of water adsorption on mineral surfaces is fundamental to soil and atmospheric science. The physiochemical effects of mineral aerosol influence atmospheric chemistry and climate as well as soil moisture. Iron-containing minerals are abundant on Earth as well as Mars, where the existence and location of surface water is uncertain. Experimental water adsorption measurements have been conducted as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust and Martian crustal material. Water adsorption on goethite was monitored using Horizontal Attenuated Total Reflectance Fourier Transform Infrared (HATR-FTIR) spectroscopy equipped with a flow cell and quantified according to Beer’s Law. Water content as a function of RH was analyzed using type II adsorption isotherms to model multilayer water adsorption. Brunauer Emmet and Teller (BET), Frenkel Halsey and Hill (FHH) and Freundlich adsorption isotherms were applied to model the experimental data. Monolayer water coverage was found to be 4.758x1013 molecules/cm2 based on BET analysis. FHH Adsorption Activation Theory (AT) was used to predict cloud condensation nuclei (CCN) activity of goethite under Earth’s atmospheric conditions. Results aid in the effort of climate prediction on Earth as well as locating liquid water on Mars’ surface. 
    more » « less
  5. Commodity PS is synthesized via free radical polymerization, whereas PS in block copolymers (BCPs) is typically synthesized via living anionic polymerization. The purpose of this work is to investigate how the synthesis method impacts important properties such as water sorption and glass transition temperature (Tg). Water sorption is important because the performance of nanostructured polymer membranes in various applications is known to be affected by environmental conditions such as humidity. Tg is important because it dictates processing conditions, both for commodity PS as well as BCPs such as thermoplastic elastomers. Water sorption in commercial PS was found to be 0.5 mgwater/gpolymer at the highest humidities investigated (about 80%), in agreement with literature. On the other hand, syndiotactic PS synthesized anionically at low temperature absorbed more water, up to 1.5 mgwater/gpolymer, due to higher free volume. The greatest impact on water sorption was due to addition of hydrophilic hydroxyl chain ends to atactic PS, which resulted in water sorption of up to 2.3 mgwater/gpolymer. In addition to measuring water sorption and dry Tg separately, the impact of relative humidity on PS Tg was examined. Combined differential scanning calorimetry and dynamic mechanical analysis show that on going from the dry state to high humidity, the Tg of PS decreases by 5 °C. Moreover, the tensile storage modulus of PS decreases from 1.58 GPa at 0% RH to 0.53 GPa at 40% RH. In addition to the practical relevance of this study, this report fills a gap in experimental literature by using a poor solvent system, PS/water, to examine plasticization in the pure polymer limit. 
    more » « less