skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on March 28, 2026

Title: The ion-ion correlations in organic ionic plastic crystal
Organic ionic plastic crystals (OIPCs) are emerging as promising electrolyte materials for solid-state batteries. However, despite the fast ionic diffusion, OIPCs exhibit relatively low DC conductivity in solid phases caused by strong ion-ion correlations that suppress charge transport. To understand the origin of this suppression, we performed a study of ion dynamics in the OIPC 1-Ethyl-1-methylpyrrolidinium bis (trifluoromethyl sulfonyl) imide [P12][TFSI] utilizing dielectric spectroscopy, light scattering, and Nuclear Magnetic Resonance diffusometry. Comparison of the results obtained in this study with the published earlier results on an OIPC with a completely different structure (Diethyl(methyl)(isobutyl)phosphonium Hexafluorophosphate [P1,2,2,4][PF6]) revealed strong similarities in ion dynamics in both systems. Unlike DC conductivity, which may drop more than ten times between melted and solid phases, diffusion of anions and cations remains high and does not show strong changes at phase transition. The conductivity spectra in the broad frequency range demonstrate unusual shapes in solid phases with an additional step separating fast local ion motions from suppressed long-range charge diffusion controlling DC conductivity. We suggested that in solid phases, anions and cations can jump only between the specific ion sites defined by the crystalline structure. These constraints lead to strong cation-cation and anion-anion correlations strongly suppressing long-range charge transport.  more » « less
Award ID(s):
2417963
PAR ID:
10600058
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
OAE publisher; open access journal
Date Published:
Journal Name:
Energy Materials
Volume:
5
Issue:
7
ISSN:
2770-5900
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Organic ionic plastic crystals (OIPCs) appear as promising materials to replace traditional liquid electrolytes, especially for use in solid state batteries. However, OIPCs show low conductive properties relative to liquid electrolytes, which presents an obstacle for their widespread applications. Recent studies revealed very high ion mobility in solid phases of OIPCs, yet the ionic conductivity is significantly (~100 times) suppressed because of strong ion-ion correlations. To understand the origin of the ion-ion correlations in OIPCs, we employed broadband dielectric spectroscopy, light scattering and NMR diffusion measurements in liquid and solid phases of Hexafluorophosphate - Diethyl(methyl)(isobutyl)phosphonium [PF6][P1,2,2,4]. The results confirmed significant decrease in conductivity of solid phases of this OIPC through ion-ion correlations. Surprisingly, these ionic correlations suppress charge displacement on rather long time scales comparable to the time of ion diffusion on the ~1.5 nm length scale. We ascribe the observed phenomena to momentum conservation in motion of mobile anions and emphasize that microscopic understanding of these correlations might enable design of OIPCs with strongly enhanced ionic conductivity. 
    more » « less
  2. We used equilibrium and non-equilibrium atomistic simulations to probe the influence of anion chemistry on the true conductivity, dynamical correlations, and ion transport mechanisms in polymeric ionic liquids. An inverse correlation was found between anion self-diffusivities, ionic mobilities, and the anion size for spherical anions. While some larger asymmetric anions had higher diffusivities than smaller spherical anions, their diffusivities and mobilities did not exhibit a direct correlation to the anion volumes. The conductivity and anion dynamical correlations also followed the same trends as displayed by the diffusivity and mobility of anions. All the systems we examined displayed positively correlated motion among anions, suggesting a contribution that enhances the conductivity beyond the ideal Nernst–Einstein value. Analysis of ion transport mechanisms demonstrated very similar hopping characteristics among the spherical anions despite differences in their sizes. 
    more » « less
  3. Ionic liquids are currently being considered as potential electrolyte candidates for next-generation batteries and energy storage devices due to their high thermal and chemical stability. However, high viscosity and low conductivity at lower temperatures have severely hampered their commercial applications. To overcome these challenges, it is necessary to develop structure–property models for ionic liquid transport properties to guide the ionic liquid design. This work expands our previous effort in developing a machine learning model on imidazolium-based ionic liquids to now include ten different cation families, representing structural and chemical diversity. The model dataset contains 2869 ionic conductivity values over a temperature range of 238–472 K collected from the NIST ILThermo database and literature values for 397 unique ionic liquids. The database covers 214 unique cations and 68 unique anions. Three machine learning models, namely multiple linear regression, random forest, and extreme gradient boosting are applied to correlate the ionic liquid conductivity data with cation and anion features. Shapely additive analysis is performed to glean insights into cation and anion features with significant impact on ionic conductivity. Finally, the extreme gradient boosting model is used to predict the ionic conductivity of ionic liquids from all the possible combinations of unique cations and anions to identify ionic liquids crossing the ionic conductivity threshold of 2.0 S m −1 . 
    more » « less
  4. The design of safe and high-performance, nanostructured, block polymer (BP) electrolytes for lithium-ion batteries requires a thorough understanding of the key parameters that govern local structure and dynamics. Yet, the interfaces between microphase-separated domains can introduce complexities in this local behavior that can be challenging to quantify. Herein, the local polymer, cation (Li+), and anion dynamics were described in salt-doped polystyrene-block-poly(oligo-oxyethylene methyl ether methacrylate) (PS-b-POEM) through a quantitative framework that considered the effects of polymer architecture, segmental mixing, chain stretching, and confinement on polymer mobility and ion transport. This framework was validated through nuclear magnetic resonance (NMR) spectroscopy measurements on solid (dry) polymer electrolyte samples. Notably, a mobility transition temperature (Tmobility) was identified through NMR spectroscopy that captured the local dynamics more accurately than the thermal glass transition temperature. Additionally, the approach quantitatively described the mobility gradient across a domain when segmental mixing effects were combined with chain stretching and confinement information, especially at higher segregation strengths – facilitating the assessment of local ion diffusion and conductivity. Spatially averaged local ion diffusion predictions quantitatively matched NMR-measured ion diffusivities in the BP samples, while spatially summed ionic conductivity predictions across a domain qualitatively captured trends in the measured ionic conductivities. 
    more » « less
  5. Abstract Organic mixed ionic‐electronic conductors (OMIECs) have garnered significant attention due to their capacity to transport both ions and electrons, making them ideal for applications in energy storage, neuromorphics, and bioelectronics. However, charge compensation mechanisms during the polymer redox process remain poorly understood, and are often oversimplified as single‐ion injection with little attention to counterion effects. To advance understanding and design strategies toward next‐generation OMIEC systems, a series of p‐channel carboxylated mixed conductors is investigated. Varying side‐chain functionality, distinctive swelling character is uncovered during electrochemical doping/dedoping with model chao‐/kosmotropic electrolytes. Carboxylic acid functionalized polymers demonstrate strong deswelling and mass reduction during doping, indicating cation expulsion, while ethoxycarbonyl counterparts exhibit prominent mass increase, pointing to an anion‐driven doping mechanism. By employingoperandograzing incidence X‐ray fluorescence (GIXRF), it is revealed that the carboxyl functionalized polymer engages in robust cation interaction, whereas ester functionalization shifts the mechanism towards no cation involvement. It is demonstrated that cations are pivotal in mitigating swelling by counterbalancing anions, enabling efficient anion uptake without compromising performance. These findings underscore the transformative influence of functionality‐driven factors and side‐chain chemistry in governing ion dynamics and conduction, providing new frameworks for designing OMIECs with enhanced performance and reduced swelling. 
    more » « less