skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Model‐Based Deep‐Learning Approach to Reconstructing the Highly Articulated Flight Kinematics of Bats
ABSTRACT Bats are capable of highly dexterous flight maneuvers that rely heavily on highly articulated hand skeletons and malleable wing membranes. To understand the underlying mechanisms, large amounts of detailed data on bat flight kinematics are required. Conventional methods to obtain these data have been based on tracing landmarks and require substantial manual effort. To generate 3D reconstructions of the entire geometry of a flying bat in a fully automated fashion, the current work has developed an approach where the pose of a trainable articulated mesh template that is based on the bat's anatomy is optimized to fit a set of binary silhouettes representing views from different directions of the flying bat. This is followed by post‐processing to smooth the reconstructed kinematics and simulate the non‐rigid motion of the wing membranes. To evaluate the method, 10 flight sequences that represent several flight maneuvers (e.g., straight flight, takeoff, u‐turn) and were recorded in a flight tunnel instrumented with 50 synchronized cameras have been reconstructed. A total of 4975 reconstructions are generated in this fashion and subject to qualitative and quantitative evaluations with promising results. The reconstructions are to be used for quantitative analyses of the maneuvering kinematics and the associated aerodynamics.  more » « less
Award ID(s):
2419088
PAR ID:
10600202
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Applied AI Letters
Volume:
6
Issue:
2
ISSN:
2689-5595
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We employ a novel computational modelling framework to perform high-fidelity direct numerical simulations of aero-structural interactions in bat-inspired membrane wings. The wing of a bat consists of an elastic membrane supported by a highly articulated skeleton, enabling localised control over wing movement and deformation during flight. By modelling these complex deformations, along with realistic wing movements and interactions with the surrounding airflow, we expect to gain new insights into the performance of these unique wings. Our model achieves a high degree of realism by incorporating experimental measurements of the skeleton’s joint movements to guide the fluid–structure interaction simulations. The simulations reveal that different segments of the wing undergo distinct aeroelastic deformations, impacting the flow dynamics and aerodynamic loads. Specifically, the simulations show significant variations in the effectiveness of the wing in generating lift, drag and thrust forces across different segments and regions of the wing. We employ a force partitioning method to analyse the causality of pressure loads over the wing, demonstrating that vortex-induced pressure forces are dominant while added-mass contributions to aerodynamic loads are minimal. This approach also elucidates the role of various flow structures in shaping pressure distributions. Finally, we compare the fully articulated, flexible bat wing with equivalent stiff wings derived from the same kinematics, demonstrating the critical impact of wing articulation and deformation on aerodynamic efficiency. 
    more » « less
  2. Abstract One of the most ancient and evolutionarily conserved behaviors in the animal kingdom involves utilizing wind-borne odor plumes to track essential elements such as food, mates, and predators. Insects, particularly flies, demonstrate a remarkable proficiency in this behavior, efficiently processing complex odor information encompassing concentrations, direction, and speed through their olfactory system, thereby facilitating effective odor-guided navigation. Recent years have witnessed substantial research explaining the impact of wing flexibility and kinematics on the aerodynamics and flow field physics governing the flight of insects. However, the relationship between the flow field and olfactory functions remains largely unexplored, presenting an attractive frontier with numerous intriguing questions. One such question pertains to whether flies intentionally manipulate the flow field around their antennae using their wing structure and kinematics to augment their olfactory capabilities. To address this question, we first reconstructed the wing kinematics based on high-speed video recordings of wing surface deformation. Subsequently, we simulated the unsteady flow field and odorant transport during the forward flight of blue bottle flies (Calliphora vomitoria) by solving the Navier–Stokes equations and odorant advection–diffusion equations using an in-house computational fluid dynamics solver. Our simulation results demonstrated that flexible wings generated greater cycle-averaged aerodynamic forces compared to purely rigid flapping wings, underscoring the aerodynamic advantages of wing flexibility. Additionally, flexible wings produced 25% greater odor intensity, enhancing the insect’s ability to detect and interpret olfactory cues. This study not only advances our understanding of the intricate interplay between wing motion, aerodynamics, and olfactory capabilities in flying insects but also raises intriguing questions about the intentional modulation of flow fields for sensory purposes in other behaviors. 
    more » « less
  3. Abstract Bat wing membranes are composed of specialized skin that is covered with small sensory hairs which are likely mechanosensory and have been suggested to help bats sense airflow during flight. These sensory hairs have to date been studied in only a few of the more than 1,400 bat species around the world. Little is known about the diversity of the sensory hair network across the bat phylogeny. In this study, we use high‐resolution photomicrographs of preserved bat wings from 17 species in 12 families to characterize the distribution of sensory hairs along the wing and among species. We identify general patterns of sensory hair distribution across species, including the apparent relationships of sensory hairs to intramembranous wing muscles, the network of connective tissues in the wing membrane, and the bones of the forelimb. We also describe distinctive clustering of these sensory structures in some species. We also quantified sensory hair density in several regions of interest in the propatagium, plagiopatagium, and dactylopagatia, finding that sensory hair density was higher proximally than distally. This examination of the anatomical organization of the sensory hair network in a comparative context provides a framework for existing research on sensory hair function and highlights avenues for further research. 
    more » « less
  4. Abstract Flying insects have a robust flight system that allows them to fly even when their forewings are damaged. The insect must adjust wingbeat kinematics to aerodynamically compensate for the loss of wing area. However, the mechanisms that allow insects with asynchronous flight muscle to adapt to wing damage are not well understood. Here, we investigated the phase and amplitude relationships between thorax deformation and flapping angle in tethered flying bumblebees subject to wing clipping and weighting. We used synchronized laser vibrometry and high-speed videography to measure thorax deformation and flapping angle, respectively. We found that changes in wing inertia did not affect thorax deformation amplitude but did influence wingbeat frequency. Increasing wing inertia increased flapping amplitude and caused a phase lag between thorax deformation and flapping angle, whereas decreasing wing inertia did not affect flapping amplitude and caused the flapping angle to lead thorax deformation. Our findings indicate that bumblebees adapt to wing damage by adjusting their wingbeat frequency rather than altering their wing stroke amplitude. Additionally, our results suggest that bumblebees operate near a wing-hinge-dominated resonant frequency, and that moments generated by steering muscles within the wing hinge influence the phase between thorax deformation and wing stroke nontrivially. These insights can inform the design of resilient, insect-inspired flapping-wing micro air vehicles. 
    more » « less
  5. Flying social insects can provide model systems for in-flight interactions in computationally-constrained aerial robot swarms. The social interactions in flying insects may be chemically modulated and quantified via recent measurement advancements able to simultaneously make precise measurements of insect wing and body motions. This paper presents the first in-flight quantitative measurements of ethanol-exposed honey bee body and wing kinematics in archival literature. Four high-speed cameras (9000 frames/sec) were used to record the wing and body motions of flying insects (Apis mellifera) and automated analysis was used to extract 9000 frame/sec measurements of honey bees’ wing and body motions through data association, hull reconstruction, and segmentation. The kinematic changes induced by exposure to incremental ethanol concentrations from 0% to 5% were studied using statistical analysis tools. Analysis considered trial-wise mean and maximum values and gross wingstroke parameters, and tested deviations for statistical significance using Welch’s t-test and Cohen’s d test. The results indicate a decrease in maximal heading and pitch rates of the body, and that roll rate is affected at high concentrations (5%). The wingstroke effects include a stroke frequency decrease and stroke amplitude increase for 2.5% or greater concentrations, gradual stroke inclination angle increase up to 2.5% concentration, and a more planar wingstroke with increasing concentration according to bulk wingstroke analysis. These ethanol-exposure effects provide a basis to separate ethanol exposure and neighbor effects in chemically mediated interaction studies. 
    more » « less