skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding the Effect of Dispersant Rheology and Binder Decomposition on 3D Printing of a Solid Oxide Fuel Cell
Solid oxide fuel cells (SOFCs) are a green energy technology that offers a cleaner and more efficient alternative to fossil fuels. The efficiency and utility of SOFCs can be enhanced by fabricating miniaturized component structures within the fuel cell footprint. In this research work, the parallel-connected inter-digitized design of micro-single-chamber SOFCs (µ-SC-SOFCs) was fabricated by a direct-write microfabrication technique. To understand and optimize the direct-write process, the cathode electrode slurry was investigated. Initially, the effects of dispersant Triton X-100 on LSCF (La0.6Sr0.2Fe0.8Co0.2O3-δ) slurry rheology was investigated. The effect of binder decomposition on the cathode electrode lines was evaluated, and further, the optimum sintering profile was determined. Results illustrate that the optimum concentration of Triton X-100 for different slurries was around 0.2–0.4% of the LSCF solid loading. A total of 60% of solid loading slurries had high viscosities and attained stability after 300 s. In addition, 40–50% solid loading slurries had relatively lower viscosity and attainted stability after 200 s. Solid loading and binder affected not only the slurry’s viscosity but also its rheology behavior. Based on the findings of this research, a slurry with 50% solid loading, 12% binder, and 0.2% dispersant was determined to be the optimal value for the fabricating of SOFCs using the direct-write method. This research work establishes guidelines for fabricating the micro-single-chamber solid oxide fuel cells by optimizing the direct-write slurry deposition process with high accuracy.  more » « less
Award ID(s):
2100850
PAR ID:
10600443
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Micromachines
Volume:
15
Issue:
5
ISSN:
2072-666X
Page Range / eLocation ID:
636
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this research, a direct-write 3D-printing method was utilized for the fabrication of inter-digitized solid oxide fuel cells (SOFCs) using ceramic materials. The cathode electrode was fabricated using the LSCF (La0.6Sr0.2Fe0.8Co0.2O3-δ) slurry loading and the Polyvinyl butyral (PVB) binder. The rheological parameters of slurries with varying LSCF slurry loading and PVB binder concentration were evaluated to determine their effect on the cathode trace performance in terms of microstructure, size, and resistance. Additionally, the dimensional shrinkage of LSCF lines after sintering was investigated to realize their influence on cathode line width and height. Moreover, the effect of the direct-write process parameters such as pressure, distance between the nozzle and substrate, and speed on the cathode line dimensions and resistance was evaluated. LSCF slurry with 50% solid loading, 12% binder, and 0.2% dispersant concentration was determined to be the optimal value for the fabrication of SOFCs using the direct-write method. The direct-write process parameters, in addition to the binder and LSCF slurry concentration ratios, had a considerable impact on the microstructure of cathode lines. Based on ANOVA findings, pressure and distance had significant effects on the cathode electrode resistance. An increase in the distance between the nozzle and substrate, speed, or extrusion pressure of the direct writing process increased the resistance of the cathode lines. These findings add to the ongoing effort to refine SOFC fabrication techniques, opening the avenues for advanced performance and efficiency of SOFCs in energy applications. 
    more » « less
  2. Lanthanum strontium cobalt iron oxide (LSCF) is commonly used as a cathode in solid oxide fuel cells (SOFCs), because it is a mixed ionic-electronic conductor with reasonable oxygen ion conductivity and high electronic conductivity. Yttria stabilized zirconia (YSZ) is used as an electrolyte in SOFCs with good oxygen ion conductivity. AC techniques are used to test the performance of SOFCs. But electrode processes at the cathode and the anode cannot be studied separately using 2-probe electrical impedance spectroscopy (EIS). To overcome this problem, 2-probe EIS with three probes and DC tests were conducted. An LSCF/8YSZ/LSCF symmetrical bar-shaped cell was made, and platinum strip electrodes were applied as probes for EIS and DC measurements. Impedance spectra across the cathode and the platinum strip electrode and across the anode and the platinum strip electrode were measured separately. The sum was evaluated to see if it matches the EIS spectra across the cathode and the anode. The polarity was switched to study how it affects the electrode processes. The polarization resistances of the electrodes were also measured by a DC method separately. EIS and DC measurements are in good agreement. Results indicate the two electrodes need not be identical. 
    more » « less
  3. In this study, two green organic solvents are reported in LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NMC111)-based slurry preparation and subsequent cathode fabrication for Li ion batteries. NMC111, conductive carbon and poly(vinylidene fluoride) binder composite slurries prepared with methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (PolarClean) and dimethyl isosorbide (DMI) exhibit mechanically stable, crack-free uniform coating structures. Both slurries showed similar shear-thinning viscosity behavior that suggests similar processibility during electrode casting and coating. When used as the cathode in Li/NMC111 half cells, the electrode slurries prepared with PolarClean show promising electrochemical performance metrics with an average specific charge capacity of 155 ± 1 mA h g −1 at C/10 over 100 cycles, comparable to the films (152 ± 3 mA h g −1 at C/10) prepared with traditional N -methyl pyrrolidone (NMP) solvent. The use of PolarClean points to a potential route to replace toxic NMP in cathode fabrication without altering the manufacturing process. However, electrodes prepared with DMI demonstrate inferior electrochemical performance with an average charge capacity of 120 mA h g −1 . Nonetheless, DMI may still offer some promising features and warrants further detailed investigation in terms of compatible electrolyte, tailoring the slurry preparation, and casting conditions. 
    more » « less
  4. A novel processing method that creates and preserves ceramic nanoparticles in solid oxide electrodes during co-sintering at traditional sintering temperatures is introduced. Specifically, carbon templated samarium-doped ceria nanoparticles (nSDC) were successfully integrated with commercial lanthanum strontium cobalt ferrite (LSCF) and commercial SDC powders, producing LSCF-SDC-nSDC cathodes upon processing. The effect of nSDC concentration on cathode electrocatalytic activity was investigated at low operational temperatures, 600 °C–700 °C, with symmetrical cells. Low nSDC loadings, ≤5 wt% nSDC, significantly decreased cell polarization resistance whereas higher loadings increased it. The best electrochemical performance was achieved with 5 wt% nSDC, lowering the polarization resistance by 41% at 600 °C. Fuel cell tests demonstrate that adding 5 wt% nSDC increased the maximum fuel cell power density by 38%. Electrochemical impedance spectra showed substantial improvements in both fuel cell polarization resistance and ohmic resistance, indicating that nSDC increased the electrocatalytically active area of the cathode. This work demonstrates a simple, novel method for effectively increasing electrocatalytic activity of solid oxide electrodes at low operational temperatures. 
    more » « less
  5. Lithium-ion battery cathodes are manufactured by coating slurries, liquid suspensions that typically include carbon black (CB), active material, and polymer binder. These slurries have a yield stress and complex rheology due to CB’s microstructural response to flow. While optimizing the formulation and processing of slurries is critical to manufacturing defect-free and high-performance cathodes, engineering the shear rheology of cathode slurries remains challenging. In this study, we conducted simultaneous rheo-electric measurements on 3 wt% CB suspensions in N-methyl-2-pyrrolidone containing various loadings of active material NMC811 and polyvinylidene difluoride. Accounting for the changes in the infinite shear viscosity, the yield stress, and the medium viscosity due to the presence of NMC and polymers, we defined the differential relative viscosity. This differential relative viscosity, Δ𝜂𝑟, is a measure of the distance from the infinite shear rate, where carbon black agglomerates are fully broken down. We find that Δ𝜂𝑟 collapses all flow curves regardless of formulation with an empirical relationship Δ𝜂𝑟=2.18𝑀𝑛𝑓−0.92, indicating a quantitative prediction of the flow curve of cathode slurries across a wide range of formulation space. We then used electrical conductivity to identify and quantify shear-induced structure memory, evidenced in the ratio of the shear conductivity over the post-shear quiescent conductivity. We find that similar to the changes in the yield stress, increasing NMC concentration increases memory retention, and in contrast, the addition of PVDF erases memory effects. Our findings here will provide valuable insight into engineering the formulation and processing conditions of lithium-ion battery cathodes. 
    more » « less