skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 16, 2026

Title: Atomistic descriptor optimization using complementary Euclidean and geodesic distance information
Descriptors are physically-inspired, symmetry-preserving schemes for representing atomistic systems that play a central role in the construction of models of potential energy surfaces. Although physical intuition can be flexibly encoded into descriptor schemes, they are generally ultimately guided only by the spatial or topological arrangement of atoms in the system. However, since interatomic potential models aim to capture the variation of the potential energy with respect to atomic configurations, it is conceivable that they would benefit from descriptor schemes that implicitly encode both structural and energetic information rather than structural information alone. Therefore, we propose a novel approach for the optimisation of descriptors based on encoding information about geodesic distances along potential energy manifolds into the hyperparameters of commonly used descriptor schemes. To accomplish this, we combine two ideas: (1) a differential-geometric approach for the fast estimation of approximate geodesic distances [Zhu et al., J. Chem. Phys. 150, 164103 (2019)]; and (2) an information-theoretic evaluation metric – information imbalance – for measuring the shared information between two distance measures [Glielmo et al. PNAS Nexus, 1, 1 (2022)]. Using three example molecules – ethanol, malonaldehyde, and aspirin – from the MD22 dataset, we first show that Euclidean (in Cartesian coordinates) and geodesic distances are inequivalent distance measures, indicating the need for updated ground-truth distance measures that go beyond the Euclidean (or, more broadly, spatial) distance. We then utilize a Bayesian optimisation framework to show that descriptors (in this case, atom-centred symmetry functions) can be optimized to maximally express a certain type of distance information, such as Euclidean or geodesic information. We also show that modifying the Bayesian optimisation algorithm to minimise a combined objective function – the sum of the descriptor↔Euclidean and descriptor↔geodesic information imbalances – can yield descriptors that not only optimally express both Euclidean and geodesic distance information simultaneously, but in fact resolve substantial disagreements between descriptors optimized to encode only one type of distance measure. We discuss the relevance of our approach to the design of more physically rich and informative descriptors that can encode useful, alternative information about molecular systems.  more » « less
Award ID(s):
2046744
PAR ID:
10600579
Author(s) / Creator(s):
;
Publisher / Repository:
Taylor and Francis
Date Published:
Journal Name:
Molecular Physics
Volume:
123
Issue:
4
ISSN:
0026-8976
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large language models (LLMs) exhibit strong in-context learning (ICL) ability, which allows the model to make predictions on new examples based on the given prompt. Recently, a line of research (Von Oswald et al., 2023; Aky¨urek et al., 2023; Ahn et al., 2023; Mahankali et al., 2023; Zhang et al., 2024) considered ICL for a simple linear regression setting and showed that the forward pass of Transformers is simulating some variants of gradient descent (GD) algorithms on the in-context examples. In practice, the input prompt usually contains a task descriptor in addition to in-context examples. We investigate how the task description helps ICL in the linear regression setting. Consider a simple setting where the task descriptor describes the mean of input in linear regression. Our results show that gradient flow converges to a global minimum for a linear Transformer. At the global minimum, the Transformer learns to use the task descriptor effectively to improve its performance. Empirically, we verify our results by showing that the weights converge to the predicted global minimum and Transformers indeed perform better with task descriptors. 
    more » « less
  2. Abstract Despite the ubiquitous use of statistical models for phylogenomic and population genomic inferences, this model-based rigor is rarely applied to post hoc comparison of trees. In a recent study, Garba et al. derived new methods for measuring the distance between two gene trees computed as the difference in their site pattern probability distributions. Unlike traditional metrics that compare trees solely in terms of geometry, these measures consider gene trees and associated parameters as probabilistic models that can be compared using standard information theoretic approaches. Consequently, probabilistic measures of phylogenetic tree distance can be far more informative than simply comparisons of topology and/or branch lengths alone. However, in their current form, these distance measures are not suitable for the comparison of species tree models in the presence of gene tree heterogeneity. Here, we demonstrate an approach for how the theory of Garba et al. (2018), which is based on gene tree distances, can be extended naturally to the comparison of species tree models. Multispecies coalescent (MSC) models parameterize the discrete probability distribution of gene trees conditioned upon a species tree with a particular topology and set of divergence times (in coalescent units), and thus provide a framework for measuring distances between species tree models in terms of their corresponding gene tree topology probabilities. We describe the computation of probabilistic species tree distances in the context of standard MSC models, which assume complete genetic isolation postspeciation, as well as recent theoretical extensions to the MSC in the form of network-based MSC models that relax this assumption and permit hybridization among taxa. We demonstrate these metrics using simulations and empirical species tree estimates and discuss both the benefits and limitations of these approaches. We make our species tree distance approach available as an R package called pSTDistanceR, for open use by the community. 
    more » « less
  3. Given a long time series, the distance profile of a query time series computes distances between the query and every possible subsequence of a long time series. MASS (Mueen’s Algorithm for Similarity Search) is an algorithm to efficiently compute distance profile under z-normalized Euclidean distance (Mueen et al. in The fastest similarity search algorithm for time series subsequences under Euclidean distance. http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html, 2017). MASS is recognized as a useful tool in many data mining works. However, complete documentation of the increasingly efficient versions of the algorithm does not exist. In this paper, we formalize the notion of a distance profile, describe four versions of the MASS algorithm, show several extensions of distance profiles under various operating conditions, describe how MASS improves performances of existing data mining algorithms, and finally, show utility of MASS in domains including seismology, robotics and power grids. 
    more » « less
  4. The Euclidean distance geometry (EDG) problem is a crucial machine learning task that appears in many applications. Utilizing the pairwise Euclidean distance information of a given point set, EDG reconstructs the configuration of the point system. When only partial distance information is available, matrix completion techniques can be incorporated to fill in the missing pairwise distances. In this paper, we propose a novel dual basis Riemannian gradient descent algorithm, coined RieEDG, for the EDG completion problem. The numerical experiments verify the effectiveness of the proposed algorithm. In particular, we show that RieEDG can precisely reconstruct various datasets consisting of 2- and 3-dimensional points by accessing a small fraction of pairwise distance information. 
    more » « less
  5. The Euclidean distance geometry (EDG) problem is a crucial machine learning task that appears in many applications. Utilizing the pairwise Euclidean distance information of a given point set, EDG reconstructs the configuration of the point system. When only partial distance information is available, matrix completion techniques can be incorporated to fill in the missing pairwise distances. In this paper, we propose a novel dual basis Riemannian gradient descent algorithm, coined RieEDG, for the EDG completion problem. The numerical experiments verify the effectiveness of the proposed algorithm. In particular, we show that RieEDG can precisely reconstruct various datasets consisting of 2- and 3-dimensional points by accessing a small fraction of pairwise distance information. 
    more » « less