We design a quantum algorithm for ground state preparation in the early fault tolerant regime. As a Monte Carlo style quantum algorithm, our method features a Lindbladian where the target state is stationary. The construction of this Lindbladian is algorithmic and should not be seen as a specific approximation to some weakly coupled system-bath dynamics in nature. Our algorithm can be implemented using just one ancilla qubit and efficiently simulated on a quantum computer. It can prepare the ground state even when the initial state has zero overlap with the ground state, bypassing the most significant limitation of methods like quantum phase estimation. As a variant, we also propose a discrete-time algorithm, demonstrating even better efficiency and providing a near-optimal simulation cost depending on the desired evolution time and precision. Numerical simulations using Ising and Hubbard models demonstrate the efficacy and applicability of our method. Published by the American Physical Society2024
more »
« less
This content will become publicly available on April 1, 2026
Ground-state selection via many-body superradiant decay
For a single particle, relaxation into different ground states is governed by fixed branching ratios determined by the transition matrix element and the environment. Here, we show that in many-body open quantum systems the occupation probability of one ground state can be boosted well beyond what is dictated by single-particle branching ratios. Despite the competition, interactions suppress all but the dominant decay transition, leading to a “winner takes all” dynamic where the system primarily settles into the dominant ground state. We prove that, in the presence of permutation symmetry, this problem is exactly solvable for any number of competing channels. Additionally, we develop an approximate model for the dynamics by mapping the evolution onto a fluid continuity equation, and analytically demonstrate that the dominant transition ratio converges to unity as a power law with increasing system size, for any branching ratios. This near-deterministic preparation of the dominant ground state has broad applicability. As an example, we discuss a protocol for molecular photoassociation where collective dynamics effectively acts as a catalyst, amplifying the yield in a specific final state. Our results open different avenues for many-body strategies in the preparation and control of quantum systems. Published by the American Physical Society2025
more »
« less
- Award ID(s):
- 2047380
- PAR ID:
- 10600687
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 7
- Issue:
- 2
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a comparison of different quantum state preparation algorithms and their overall efficiency for the Schwinger model with a theta term. While adiabatic state preparation is proved to be effective, in practice it leads to large gate counts to prepare the ground state. The quantum approximate optimization algorithm (QAOA) provides excellent results while keeping the counts small by design, at the cost of an expensive classical minimization process. We introduce a “blocked” modification of the Schwinger Hamiltonian to be used in the QAOA that further decreases the length of the algorithms as the size of the problem is increased. The rodeo algorithm (RA) provides a powerful tool to efficiently prepare any eigenstate of the Hamiltonian, as long as its overlap with the initial guess is large enough. We obtain the best results when combining the blocked QAOA ansatz and the RA, as this provides an excellent initial state with a relatively short algorithm without the need to perform any classical steps for large problem sizes. Published by the American Physical Society2025more » « less
-
We simulate the dynamics of Rydberg atoms resonantly exchanging energy via two-, three-, and four-body dipole-dipole interactions in a one-dimensional array. Using simplified models of a realistic experimental system, we study the initial-state survival probability, mean level spacing, spread of entanglement, and properties of the energy eigenstates. By exploring a range of disorders and interaction strengths, we find regions in parameter space where the three- and four-body dynamics either fail to thermalize or do so slowly. The interplay between the stronger hopping and weaker field-tuned interactions gives rise to quantum many-body scar states, which play a critical role in slowing the dynamics of the three- and four-body interactions. Published by the American Physical Society2024more » « less
-
We study the combined effects of measurements and unitary evolution on the preparation of spin squeezing in an ensemble of atoms interacting with a single electromagnetic field mode inside a cavity. We derive simple criteria that determine the conditions at which measurement based entanglement generation overperforms unitary protocols. We include all relevant sources of decoherence and study both their effect on the optimal spin squeezing and the overall size of the measurement noise, which limits the dynamical range of quantum-enhanced phase measurements. Our conclusions are relevant for state-of-the-art atomic clocks that aim to operate below the standard quantum limit. Published by the American Physical Society2024more » « less
-
We study neutrino flavor evolution in the quantum many-body approach using the full neutrino-neutrino Hamiltonian, including the usually neglected terms that mediate nonforward scattering processes. Working in the occupation number representation with plane waves as single-particle states, we explore the time evolution of simple initial states with up to neutrinos. We discuss the time evolution of the Loschmidt echo, one body flavor and kinetic observables, and the one-body entanglement entropy. For the small systems considered, we observe “thermalization” of both flavor and momentum degrees of freedom on comparable time scales, with results converging towards expectation values computed within a microcanonical ensemble. We also observe that the inclusion of nonforward processes generates a faster flavor evolution compared to the one induced by the truncated (forward) Hamiltonian. Published by the American Physical Society2024more » « less
An official website of the United States government
