Abstract Metabotropic glutamate receptors (mGluRs) are class C G protein-coupled receptors that function as obligate dimers in regulating neurotransmission and synaptic plasticity in the central nervous system. The mGluR1 subtype has been shown to be modulated by the membrane lipid environment, particularly cholesterol, though the molecular mechanisms remain elusive. In this study, we employed all-atom molecular dynamics simulations to investigate the effects of cholesterol on the conformational dynamics of the mGluR1 seven-transmembrane (7TM) domain in an inactive state model. Simulations were performed with three different cholesterol concentrations (0%, 10%, and 25%) in a palmitoyl-oleoyl phosphatidylcholine (POPC) lipid bilayer system. Our results demonstrate that cholesterol induces conformational changes in the mGluR1 dimer more significantly than in the individual protomers. Notably, cholesterol modulates the dynamics and conformations of the TM1 and TM2 helices at the dimer interface. Interestingly, an intermediate cholesterol concentration of 10% elicits more pronounced conformational changes compared to both cholesterol-depleted (0%) and cholesterol-enriched (25%) systems. Specific electrostatic interaction unique to the 10% cholesterol system further corroborate these conformational differences. Given the high sequence conservation of the 7TM domains across mGluR subtypes, the cholesterol-dependent effects observed in mGluR1 are likely applicable to other members of this receptor family. Our findings provide atomistic insights into how cholesterol modulates the conformational landscape of mGluRs, which could impact their function and signaling mechanisms. 
                        more » 
                        « less   
                    This content will become publicly available on April 7, 2026
                            
                            Lipid-Mediated Modulation of mGluR2 Embedded in Micelle and Bilayer Environments: Insights from Molecular Dynamics
                        
                    
    
            Abstract Metabotropic glutamate receptor 2 (mGluR2), a subclass C member of the G protein-coupled receptor (GPCR) superfamily, is essential for regulating neurotransmitter signaling and facilitating synaptic adaptability in the central nervous system. This receptor, like other GPCRs, is highly sensitive to its surrounding lipid environment, where specific lipid compositions can influence its stability, conformational dynamics, and function. In particular, cholesteryl hemisuccinate (CHS) plays a critical role in stabilizing mGluR2 and modulating its structural states within cellular membranes and micellar environments. However, the molecular basis for this lipid-mediated modulation remains largely unexplored. To investigate the effects of CHS and lipid composition on mGluR2, we employed all-atom molecular dynamics simulations of mGluR2 embedded in both detergent micelles (BLMNG and CHS) and a POPC lipid bilayer containing 0%, 10%, and 25% CHS. These simulations were conducted for both active and inactive states of the receptor. Our findings reveal that CHS concentration modulates mGluR2’s structural stability and conformational behavior, with a marked impact observed within transmembrane helices TM1, TM2, and TM3, which constitute the core of the receptor’s transmembrane domain. In micelle environments, mGluR2 displayed unique conformational dynamics influenced by CHS, underscoring the receptor’s sensitivity to its lipid surroundings. Notably, a CHS concentration of 10% elicited more pronounced conformational changes than either cholesterol-depleted (0%) or cholesterol-enriched (25%) systems, indicating an optimal CHS range for maintaining structural stability. Our study provides atomistic insights into how lipid composition and CHS concentration impact mGluR2’s conformational landscape in distinct micelle and bilayer environments. These findings advance our understanding of lipid-mediated modulation in GPCR function, highlighting potential avenues for receptor-targeted drug design, particularly in cases where lipid interactions play a significant role in therapeutic efficacy. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1945465
- PAR ID:
- 10600748
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            KCNE3 is a potassium channel accessory transmembrane protein that regulates the function of various voltage-gated potassium channels such as KCNQ1. KCNE3 plays an important role in the recycling of potassium ion by binding with KCNQ1. KCNE3 can be found in the small intestine, colon, and in the human heart. Despite its biological significance, there is little information on the structural dynamics of KCNE3 in native-like membrane environments. Molecular dynamics (MD) simulations are a widely used as a tool to study the conformational dynamics and interactions of proteins with lipid membranes. In this study, we have utilized all-atom molecular dynamics simulations to characterize the molecular motions and the interactions of KCNE3 in a bilayer composed of: a mixture of POPC and POPG lipids (3:1), POPC alone, and DMPC alone. Our MD simulation results suggested that the transmembrane domain (TMD) of KCNE3 is less flexible and more stable when compared to the N- and C-termini of KCNE3 in all three membrane environments. The conformational flexibility of N- and C-termini varies across these three lipid environments. The MD simulation results further suggested that the TMD of KCNE3 spans the membrane width, having residue A69 close to the center of the lipid bilayers and residues S57 and S82 close to the lipid bilayer membrane surfaces. These results are consistent with previous biophysical studies of KCNE3. The outcomes of these MD simulations will help design biophysical experiments and complement the experimental data obtained on KCNE3 to obtain a more detailed understanding of its structural dynamics in the native membrane environment.more » « less
- 
            G protein-coupled receptors (GPCRs) represent the largest group of membrane receptors for transmembrane signal transduction. Ligand-induced activation of GPCRs triggers G protein activation followed by various signaling cascades. Understanding the structural and energetic determinants of ligand binding to GPCRs and GPCRs to G proteins is crucial to the design of pharmacological treatments targeting specific conformations of these proteins to precisely control their signaling properties. In this study, we focused on interactions of a prototypical GPCR, beta-2 adrenergic receptor (β 2 AR), with its endogenous agonist, norepinephrine (NE), and the stimulatory G protein (G s ). Using molecular dynamics (MD) simulations, we demonstrated the stabilization of cationic NE, NE(+), binding to β 2 AR by G s protein recruitment, in line with experimental observations. We also captured the partial dissociation of the ligand from β 2 AR and the conformational interconversions of G s between closed and open conformations in the NE(+)–β 2 AR–G s ternary complex while it is still bound to the receptor. The variation of NE(+) binding poses was found to alter G s α subunit (G s α) conformational transitions. Our simulations showed that the interdomain movement and the stacking of G s α α1 and α5 helices are significant for increasing the distance between the G s α and β 2 AR, which may indicate a partial dissociation of G s α The distance increase commences when G s α is predominantly in an open state and can be triggered by the intracellular loop 3 (ICL3) of β 2 AR interacting with G s α, causing conformational changes of the α5 helix. Our results help explain molecular mechanisms of ligand and GPCR-mediated modulation of G protein activation.more » « less
- 
            KCNE3 is a single-pass integral membrane protein that regulates numerous voltage-gated potassium channel functions such as KCNQ1. Previous solution NMR studies suggested a moderate degree of curved α-helical structure in the transmembrane domain (TMD) of KCNE3 in lyso-myristoylphosphatidylcholine (LMPC) micelles and isotropic bicelles with the residues T71, S74 and G78 situated along the concave face of the curved helix. During the interaction of KCNE3 and KCNQ1, KCNE3 pushes its transmembrane domain against KCNQ1 to lock the voltage sensor in its depolarized conformation. A cryo-EM study of KCNE3 complexed with KCNQ1 in nanodiscs suggested a deviation of the KCNE3 structure from its independent structure in isotropic bicelles. Despite the biological significance of KCNE3 TMD, the conformational properties of KCNE3 are poorly understood. Here, all atom molecular dynamics (MD) simulations were utilized to investigate the conformational dynamics of the transmembrane domain of KCNE3 in a lipid bilayer containing a mixture of POPC and POPG lipids (3:1). Further, the effect of the interaction impairing mutations (V72A, I76A and F68A) on the conformational properties of the KCNE3 TMD in lipid bilayers was investigated. Our MD simulation results suggest that the KCNE3 TMD adopts a nearly linear α helical structural conformation in POPC-POPG lipid bilayers. Additionally, the results showed no significant change in the nearly linear α-helical conformation of KCNE3 TMD in the presence of interaction impairing mutations within the sampled time frame. The KCNE3 TMD is more stable with lower flexibility in comparison to the N-terminal and C-terminal of KCNE3 in lipid bilayers. The overall conformational flexibility of KCNE3 also varies in the presence of the interaction-impairing mutations. The MD simulation data further suggest that the membrane bilayer width is similar for wild-type KCNE3 and KCNE3 containing mutations. The Z-distance measurement data revealed that the TMD residue site A69 is close to the lipid bilayer center, and residue sites S57 and S82 are close to the surfaces of the lipid bilayer membrane for wild-type KCNE3 and KCNE3 containing interaction-impairing mutations. These results agree with earlier KCNE3 biophysical studies. The results of these MD simulations will provide complementary data to the experimental outcomes of KCNE3 to help understand its conformational dynamic properties in a more native lipid bilayer environment.more » « less
- 
            Distinct lipid bilayer compositions have general and protein-specific effects on K+ channel functionnull (Ed.)It has become increasingly apparent that the lipid composition of cell membranes affects the function of transmembrane proteins such as ion channels. Here, we leverage the structural and functional diversity of small viral K+ channels to systematically examine the impact of bilayer composition on the pore module of single K+ channels. In vitro–synthesized channels were reconstituted into phosphatidylcholine bilayers ± cholesterol or anionic phospholipids (aPLs). Single-channel recordings revealed that a saturating concentration of 30% cholesterol had only minor and protein-specific effects on unitary conductance and gating. This indicates that channels have effective strategies for avoiding structural impacts of hydrophobic mismatches between proteins and the surrounding bilayer. In all seven channels tested, aPLs augmented the unitary conductance, suggesting that this is a general effect of negatively charged phospholipids on channel function. For one channel, we determined an effective half-maximal concentration of 15% phosphatidylserine, a value within the physiological range of aPL concentrations. The different sensitivity of two channel proteins to aPLs could be explained by the presence/absence of cationic amino acids at the interface between the lipid headgroups and the transmembrane domains. aPLs also affected gating in some channels, indicating that conductance and gating are uncoupled phenomena and that the impact of aPLs on gating is protein specific. In two channels, the latter can be explained by the altered orientation of the pore-lining transmembrane helix that prevents flipping of a phenylalanine side chain into the ion permeation pathway for long channel closings. Experiments with asymmetrical bilayers showed that this effect is leaflet specific and most effective in the inner leaflet, in which aPLs are normally present in plasma membranes. The data underscore a general positive effect of aPLs on the conductance of K+ channels and a potential interaction of their negative headgroup with cationic amino acids in their vicinity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
