skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tasselyzer, a machine learning method to quantify maize anther exertion, based on PlantCV
SUMMARY Maize anthers emerge from male‐only florets, a process that involves complex genetic programming and is affected by environmental factors. Quantifying anther exertion provides a key indicator of male fertility; however, traditional manual scoring methods are often subjective and labor‐intensive. To address this limitation, we developedTasselyzer— an accessible, cost‐effective, and time‐saving method for quantifying maize anther exertion. This image‐based program uses the PlantCV platform to provide a quantitative assessment of anther exertion by capturing regional differences within the tassel based on the distinct color of anthers. We applied this method to 22 maize lines with six genotypes, showing high precision (F1score > 0.8). Furthermore, we demonstrate that customizing the parameters to assay a specific line is straightforward and practical for enhancing precision in additional genotypes. Tasselyzer is a valuable resource for maize research and breeding programs, enabling automated and efficient assessments of anther exertion.  more » « less
Award ID(s):
2445607
PAR ID:
10600751
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
The Plant Journal
Volume:
121
Issue:
4
ISSN:
0960-7412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The developmental genetics of reproductive structure control in maize must consider both the staminate florets of the tassel and the pistillate florets of the ear synflorescences. Pistil abortion takes place in the tassel florets, and stamen arrest is affected in ear florets to give rise to the monoecious nature of maize. Gibberellin (GA) deficiency results in increased tillering, a dwarfed plant syndrome, and the retention of anthers in the ear florets of maize. Thesilkless1mutant results in suppression of silks in the ear. We demonstrate in this study that jasmonic acid (JA) and GA act independently and show additive phenotypes resulting in androeciousdwarf1;silkless1double mutant plants. The persistence of pistils in the tassel can be induced by multiple mechanisms, including JA deficiency, GA excess, genetic control of floral determinacy, and organ identity. Thesilkless1mutant can suppress both silks in the ear and the silks in the tassel of JA‐deficient and AP2 transcription factortasselseedmutants. We previously demonstrated that GA production was required for brassinosteroid (BR) deficiency to affect persistence of pistils in the tassel. We find that BR deficiency affects pistil persistence by an independent mechanism from thesilkless1mutant and JA pathway. Thesilkless1mutant did not prevent the formation of pistils in the tassel bynana plant2in double mutants. In addition, we demonstrate that there is more to thesilkless1mutant than just a suppression of pistil growth. We document novel phenotypes ofsilkless1mutants including weakly penetrant ear fasciation and anther persistence in the ear florets. Thus, the JA/AP2 mechanism of pistil retention in the tassel and silk growth in the ear are similarly sensitive to loss of the SILKLESS1 protein, while the BR/GA mechanism is not. 
    more » « less
  2. Summary Photoprotection against excess light via nonphotochemical quenching (NPQ) is indispensable for plant survival. However, slow NPQ relaxation under low light conditions can decrease yield of field‐grown crops up to 40%.Using semi‐high‐throughput assay, we quantified the kinetics of NPQ and photosystem II operating efficiency (ΦPSII) in a replicated field trial of more than 700 maize (Zea mays) genotypes across 2 yr. Parametrized kinetics data were used to conduct genome‐wide association studies.For six candidate genes involved in NPQ and ΦPSII kinetics in maize the loss of function alleles of orthologous genes in Arabidopsis (Arabidopsis thaliana) were characterized: two thioredoxin genes, and genes encoding a transporter in the chloroplast envelope, an initiator of chloroplast movement, a putative regulator of cell elongation and stomatal patterning, and a protein involved in plant energy homeostasis.Since maize and Arabidopsis are distantly related, we propose that genes involved in photoprotection and PSII function are conserved across vascular plants. The genes and naturally occurring functional alleles identified here considerably expand the toolbox to achieving a sustainable increase in crop productivity. 
    more » « less
  3. Abstract Background and AimsNitrogenous fertilizers provide a short-lived benefit to crops in agroecosystems, but stimulate nitrification and denitrification, processes that result in nitrate pollution, N2O production, and reduced soil fertility. Recent advances in plant microbiome science suggest that genetic variation in plants can modulate the composition and activity of rhizosphere N-cycling microorganisms. Here we attempted to determine whether genetic variation exists inZea maysfor the ability to influence the rhizosphere nitrifier and denitrifier microbiome under “real-world” conventional agricultural conditions. MethodsTo capture an extensive amount of genetic diversity within maize we grew and sampled the rhizosphere microbiome of a diversity panel of germplasm that included ex-PVP inbreds (Z. maysssp.mays), ex-PVP hybrids (Z. maysssp.mays), and teosinte (Z. maysssp. mexicanaandZ. maysssp.parviglumis). From these samples, we characterized the microbiome, a suite of microbial genes involved in nitrification and denitrification and carried out N-cycling potential assays. ResultsHere we are showing that populations/genotypes of a single species can vary in their ecological interaction with denitrifers and nitrifers. Some hybrid and teosinte genotypes supported microbial communities with lower potential nitrification and potential denitrification activity in the rhizosphere, while inbred genotypes stimulated/did not inhibit these N-cycling activities. These potential differences translated to functional differences in N2O fluxes, with teosinte plots producing less GHG than maize plots. ConclusionTaken together, these results suggest thatZeagenetic variation can lead to changes in N-cycling processes that result in N leaching and N2O production, and thereby are selectable targets for crop improvement. Understanding the underlying genetic variation contributing to belowground microbiome N-cycling into our conventional agricultural system could be useful for sustainability. 
    more » « less
  4. Buzz pollination involves the release of pollen from, primarily, poricidal anthers through vibrations generated by certain bee species. Despite previous experimental and numerical studies, the intricacies of pollen dynamics within vibrating anthers remain elusive due to the challenges in observing these small-scale, opaque systems. This research employs the discrete element method to simulate the pollen expulsion process in vibrating anthers. By exploring various frequencies and displacement amplitudes, a correlation between how aggressively the anther shakes and the initial rate of pollen expulsion is observed under translating oscillations. This study highlights that while increasing both the frequency and displacement of vibration enhances pollen release, the rate of release does not grow linearly with their increase. Our findings also reveal the significant role of pollen–pollen interactions, which account for upwards of one-third of the total collisions. Comparisons between two types of anther exits suggest that pore size and shape also influence expulsion rates. This research provides a foundation for more comprehensive models that can incorporate additional factors such as cohesion, adhesion and Coulomb forces, paving the way for deeper insights into the mechanics of buzz pollination and its variability across different anther types and vibration parameters. 
    more » « less
  5. Abstract Root hairs are considered important for rhizosphere formation, which affects root system functioning. Through interactions with soil microorganisms mediated by root exudation, root hairs may affect the phenotypes and growth of young plants. We tested this hypothesis by integrating results from two experiments: (1) a factorial greenhouse seedling experiment withZea mays B73‐wtand its root‐hairless mutant,B73‐rth3, grown in live and autoclaved soil, quantifying 15 phenotypic traits, seven growth rates, and soil microbiomes and (2) a semi‐hydroponic system quantifying root exudation of maize genotypes. Possibly as compensation for lacking root hairs,B73‐rth3seedlings allocated more biomass to roots and grew slower thanB73‐wtseedlings in live soil, whereasB73‐wtseedlings grew slowest in autoclaved soil, suggesting root hairs can be costly and their benefits were realized with more complete soil microbial assemblages. There were substantial differences in root exudation between genotypes and in rhizosphere versus non‐rhizosphere microbiomes. The microbial taxa enriched in the presence of root hairs generally enhanced growth compared to taxa enriched in their absence. Our findings suggest the root hairs' adaptive value extends to plant‐microbe interactions mediated by root exudates, affecting plant phenotypes, and ultimately, growth. 
    more » « less