skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence-Aware Attention for Multivariate Temporal Point Processes
Identifying the subset of events that influence events of interest from continuous time datasets is of great interest in various applications. Existing methods however often fail to produce accurate and interpretable results in a time-efficient manner. In this paper, we propose a neural model – Influence-Aware Attention for Multivariate Temporal Point Processes (IAA-MTPPs) – which leverages the powerful attention mechanism in transformers to capture temporal dynamics between event types, which is different from existing instance-to-instance attentions, using variational inference while maintaining interpretability. Given event sequences and a prior influence matrix, IAA-MTPP efficiently learns an approximate posterior by an Attention-to-Influence mechanism, and subsequently models the conditional likelihood of the sequences given a sampled influence through an Influence-to-Attention formulation. Both steps are completed efficiently inside a Bblock multi-head self-attention layer, thus our end-to-end training with parallelizable transformer architecture enables faster training compared to sequential models such as RNNs. We demonstrate strong empirical performance compared to existing baselines on multiple synthetic and real benchmarks, including qualitative analysis for an application in decentralized finance.  more » « less
Award ID(s):
2113906
PAR ID:
10600784
Author(s) / Creator(s):
; ; ; ;
Editor(s):
van_der_Schaar, M; Janzing, D; Zhang, C
Publisher / Repository:
2nd Conference on Causal Learning and Reasoning
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Identifying the subset of events that influence events of interest from continuous time datasets is of great interest in various applications. Existing methods however often fail to produce accurate and interpretable results in a time-efficient manner. In this paper, we propose a neural model – Influence-Aware Attention for Multivariate Temporal Point Processes (IAA-MTPPs) – which leverages the powerful attention mechanism in transformers to capture temporal dynamics between event types, which is different from existing instance-to-instance attentions, using variational inference while maintaining interpretability. Given event sequences and a prior influence matrix, IAA-MTPP efficiently learns an approximate posterior by an Attention-to-Influence mechanism, and subsequently models the conditional likelihood of the sequences given a sampled influence through an Influence-to-Attention formulation. Both steps are completed efficiently inside a B-block multi-head self-attention layer, thus our end-to-end training with parallelizable transformer architecture enables faster training compared to sequential models such as RNNs. We demonstrate strong empirical performance compared to existing baselines on multiple synthetic and real benchmarks, including qualitative analysis for an application in decentralized finance. 
    more » « less
  2. Deep learning models have been studied to forecast human events using vast volumes of data, yet they still cannot be trusted in certain applications such as healthcare and disaster assistance due to the lack of interpretability. Providing explanations for event predictions not only helps practitioners understand the underlying mechanism of prediction behavior but also enhances the robustness of event analysis. Improving the transparency of event prediction models is challenging given the following factors: (i) multilevel features exist in event data which creates a challenge to cross-utilize different levels of data; (ii) features across different levels and time steps are heterogeneous and dependent; and (iii) static model-level interpretations cannot be easily adapted to event forecasting given the dynamic and temporal characteristics of the data. Recent interpretation methods have proven their capabilities in tasks that deal with graph-structured or relational data. In this paper, we present a Contextualized Multilevel Feature learning framework, CMF, for interpretable temporal event prediction. It consists of a predictor for forecasting events of interest and an explanation module for interpreting model predictions. We design a new context-based feature fusion method to integrate multiple levels of heterogeneous features. We also introduce a temporal explanation module to determine sequences of text and subgraphs that have crucial roles in a prediction. We conduct extensive experiments on several real-world datasets of political and epidemic events. We demonstrate that the proposed method is competitive compared with the state-of-the-art models while possessing favorable interpretation capabilities. 
    more » « less
  3. Natural language often describes events in different granularities, such that more coarse-grained (goal) events can often be decomposed into fine-grained sequences of (step) events. A critical but overlooked challenge in understanding an event process lies in the fact that the step events are not equally important to the central goal. In this paper, we seek to fill this gap by studying how well current models can understand the essentiality of different step events towards a goal event. As discussed by cognitive studies, such an ability enables the machine to mimic human’s commonsense reasoning about preconditions and necessary efforts of daily-life tasks. Our work contributes with a high-quality corpus of (goal, step) pairs from a community guideline website WikiHow, where the steps are manually annotated with their essentiality w.r.t. the goal. The high IAA indicates that humans have a consistent understanding of the events. Despite evaluating various statistical and massive pre-trained NLU models, we observe that existing SOTA models all perform drastically behind humans, indicating the need for future investigation of this crucial yet challenging task. 
    more » « less
  4. Citations of scientific papers and patents reveal the knowledge flow and usually serve as the metric for evaluating their novelty and impacts in the field. Citation Forecasting thus has various applications in the real world. Existing works on citation forecasting typically exploit the sequential properties of citation events, without exploring the citation network. In this paper, we propose to explore both the citation network and the related citation event sequences which provide valuable information for future citation forecasting. We propose a novel Citation Network and Event Sequence (CINES) Model to encode signals in the citation network and related citation event sequences into various types of embeddings for decoding to the arrivals of future citations. Moreover, we propose a temporal network attention and three alternative designs of bidirectional feature propagation to aggregate the retrospective and prospective aspects of publications in the citation network, coupled with the citation event sequence embeddings learned by a two-level attention mechanism for the citation forecasting. We evaluate our models and baselines on both a U.S. patent dataset and a DBLP dataset. Experimental results show that our models outperform the state-of-the-art methods, i.e., RMTPP, CYAN-RNN, Intensity-RNN, and PC-RNN, reducing the forecasting error by 37.76% - 75.32%. 
    more » « less
  5. null (Ed.)
    Temporal event sequence alignment has been used in many domains to visualize nuanced changes and interactions over time. Existing approaches align one or two sentinel events. Overview tasks require examining all alignments of interest using interaction and time or juxtaposition of many visualizations. Furthermore, any event attribute overviews are not closely tied to sequence visualizations. We present SEQUENCE BRAIDING, a novel overview visualization for temporal event sequences and attributes using a layered directed acyclic network. SEQUENCE BRAIDING visually aligns many temporal events and attribute groups simultaneously and supports arbitrary ordering, absence, and duplication of events. In a controlled experiment we compare SEQUENCE BRAIDING and IDMVis on user task completion time, correctness, error, and confidence. Our results provide good evidence that users of SEQUENCE BRAIDING can understand high-level patterns and trends faster and with similar error. A full version of this paper with all appendices; the evaluation stimuli, data, and analysis code; and source code are available at osf.io/mq2wt. 
    more » « less