skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 17, 2026

Title: Mitigating Heterogeneous Token Overfitting in LLM Knowledge Editing
Large language models (LLMs) have achieved remarkable performance on various natural language tasks. However, they are trained on static corpora and their knowledge can become outdated quickly in the fast-changing world. This motivates the development of knowledge editing (KE) to update specific knowledge in LLMs without changing unrelated others or compromising their pre-trained capabilities. Previous efforts sought to update a small amount of parameters of a LLM and proved effective for making selective updates. Nonetheless, the edited LLM often exhibits degraded ability to reason about the new knowledge. In this work, we identify a key issue: \textit{heterogeneous token overfitting} (HTO), where the LLM overfits different tokens in the provided knowledge at varying rates. To tackle this, we propose {\NAME}, a token-level smoothing method that mitigates HTO by adaptively refining the target distribution. Theoretically, {\NAME} offers better parameter updates with negligible computation overhead. It also induces an implicit DPO but does not require preference data pairs. Extensive experiments across four editing methods, two LLMs, and diverse scenarios demonstrate the effectiveness and versatility of our method.  more » « less
Award ID(s):
2340241
PAR ID:
10600834
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
ICML
Date Published:
Journal Name:
Proceedings of Machine Learning Research
ISSN:
2640-3498
ISBN:
9798331302238
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large Language Models (LLMs) have recently transformed both the academic and industrial landscapes due to their remarkable capacity to understand, analyze, and generate texts based on their vast knowledge and reasoning ability. Nevertheless, one major drawback of LLMs is their substantial computational cost for pre-training due to their unprecedented amounts of parameters. The disadvantage is exacerbated when new knowledge frequently needs to be introduced into the pre-trained model. Therefore, it is imperative to develop effective and efficient techniques to update pre-trained LLMs. Traditional methods encode new knowledge in pre-trained LLMs through direct fine-tuning. However, naively re-training LLMs can be computationally intensive and risks degenerating valuable pre-trained knowledge irrelevant to the update in the model. Recently,Knowledge-based Model Editing(KME), also known asKnowledge EditingorModel Editing, has attracted increasing attention, which aims at precisely modifying the LLMs to incorporate specific knowledge, without negatively influencing other irrelevant knowledge. In this survey, we aim at providing a comprehensive and in-depth overview of recent advances in the field of KME. We first introduce a general formulation of KME to encompass different KME strategies. Afterward, we provide an innovative taxonomy of KME techniques based on how the new knowledge is introduced into pre-trained LLMs, and investigate existing KME strategies while analyzing key insights, advantages, and limitations of methods from each category. Moreover, representative metrics, datasets, and applications of KME are introduced accordingly. Finally, we provide an in-depth analysis regarding the practicality and remaining challenges of KME and suggest promising research directions for further advancement in this field. 
    more » « less
  2. By design, large language models (LLMs) are static general-purpose models, expensive to retrain or update frequently. As they are increasingly adopted for knowledge-intensive tasks, it becomes evident that these design choices lead to failures to generate factual, relevant, and up-to-date knowledge. To this end, we propose Knowledge Card, a modular framework to plug in new factual and relevant knowledge into general-purpose LLMs. We first introduce knowledge cards---specialized language models trained on corpora from specific domains and sources. Knowledge cards serve as parametric repositories that are selected at inference time to generate background knowledge for the base LLM. We then propose three content selectors to dynamically select and retain information in documents generated by knowledge cards, specifically controlling for relevance, brevity, and factuality of outputs. Finally, we propose two complementary integration approaches to augment the base LLM with the (relevant, factual) knowledge curated from the specialized LMs. Through extensive experiments, we demonstrate that Knowledge Card achieves state-of-the-art performance on six benchmark datasets. Ultimately, Knowledge Card framework enables dynamic synthesis and updates of knowledge from diverse domains. Its modularity will ensure that relevant knowledge can be continuously updated through the collective efforts of the research community. 
    more » « less
  3. Memory Editing (ME) has emerged as an efficient method to modify erroneous facts or inject new facts into Large Language Models (LLMs). Two mainstream ME methods exist: parameter-modifying ME and parameter-preserving ME (integrating extra modules while preserving original parameters). Regrettably, previous studies on ME evaluation have two critical limitations: (i) evaluating LLMs with single edit only, neglecting the need for continuous editing, and (ii) evaluations focusing solely on basic factual triples, overlooking broader LLM capabilities like logical reasoning and reading understanding. This study addresses these limitations with contributions threefold: (i) We explore how ME affects a wide range of fundamental capabilities of LLMs under sequential editing. Experimental results reveal an intriguing phenomenon: Most parameter-modifying ME consistently degrade performance across all tasks after a few sequential edits. In contrast, parameter-preserving ME effectively maintains LLMs’ fundamental capabilities but struggles to accurately recall edited knowledge presented in a different format. (ii) We extend our evaluation to different editing settings, such as layers to edit, model size, instruction tuning, etc. Experimental findings indicate several strategies that can potentially mitigate the adverse effects of ME. (iii) We further explain why parameter-modifying damages LLMs from three dimensions: parameter changes after editing, language modeling capability, and the in-context learning capability. Our in-depth study advocates more careful use of ME in real-world scenarios. 
    more » « less
  4. We propose a method to teach multiple large language models (LLM) to collaborate by interleaving their generations at the token level. We model the decision of which LLM generates the next token as a latent variable. By optimizing the marginal likelihood of a training set under our latent variable model, the base LLM automatically learns when to generate itself and when to call on one of the “assistant” language models to generate, all without direct supervision. Token-level collaboration during decoding allows for a fusion of each model’s expertise in a manner tailored to the specific task at hand. Our collaborative decoding is especially useful in cross-domain settings where a generalist base LLM learns to invoke domain ex- pert models. On instruction-following, domain- specific QA, and reasoning tasks, we show that the performance of the joint system exceeds that of the individual models. Through qualitative analysis of the learned latent decisions, we show models trained with our method exhibit several interesting collaboration patterns, e.g., template-filling. 
    more » « less
  5. Aligning large language models (LLMs) with human objectives is crucial for real-world applications. However, fine-tuning LLMs for alignment often suffers from unstable training and requires substantial computing resources. Test-time alignment techniques, such as prompting and guided decoding, do not modify the underlying model, and their performance remains dependent on the original model's capabilities. To address these challenges, we propose aligning LLMs through representation editing. The core of our method is to view a pre-trained autoregressive LLM as a discrete-time stochastic dynamical system. To achieve alignment for specific objectives, we introduce external control signals into the state space of this language dynamical system. We train a value function directly on the hidden states according to the Bellman equation, enabling gradient-based optimization to obtain the optimal control signals at test time. Our experiments demonstrate that our method outperforms existing test-time alignment techniques while requiring significantly fewer resources compared to fine-tuning methods. Our code is available at https://github.com/Lingkai-Kong/RE-Control. 
    more » « less