High-intensity pulse-beams are ubiquitous in scientific investigations and industrial applications ranging from the generation of secondary radiation sources (e.g., high harmonic generation, electrons) to material processing (e.g., micromachining, laser-eye surgery). Crucially, pulse-beams can only be controlled to the degree to which they are characterized, necessitating sophisticated measurement techniques. We present a reference-free, full-field, single-shot spatiospectral measurement technique called broadband single-shot ptychography (BBSSP). BBSSP provides the complex wavefront for each spectral and polarization component in an ultrafast pulse-beam and should be applicable across the electromagnetic spectrum. BBSSP will dramatically improve the application and mitigation of spatiospectral pulse-beam structure.
more »
« less
This content will become publicly available on December 1, 2026
Stable laser-acceleration of high-flux proton beams with plasma collimation
Abstract Laser-plasma acceleration of protons offers a compact, ultra-fast alternative to conventional acceleration techniques, and is being widely pursued for potential applications in medicine, industry and fundamental science. Creating a stable, collimated beam of protons at high repetition rates presents a key challenge. Here, we demonstrate the generation of multi-MeV proton beams from a fast-replenishing ambient-temperature liquid sheet. The beam has an unprecedentedly low divergence of 1° (≤20 mrad), resulting from magnetic self-guiding of the proton beam during propagation through a low density vapour. The proton beams, generated at a repetition rate of 5 Hz using only 190 mJ of laser energy, exhibit a hundred-fold increase in flux compared to beams from a solid target. Coupled with the high shot-to-shot stability of this source, this represents a crucial step towards applications.
more »
« less
- PAR ID:
- 10600929
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- SLAC
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ultra-intense laser and plasma interactions with their ability to accelerate particles reaching relativistic speed are exciting from a fundamental high-field physics perspective. Such relativistic laser-plasma interaction (RLPI) offers a plethora of critical applications for energy, space, and defense enterprise. At AFIT’s Extreme Light Laboratory (ELL), we have demonstrated such RLPI employing a table-top ∼10mJ, 40 fs laser pulses at a kHz repetition rate that produce different types of secondary radiations via target normal sheath acceleration (TNSA). With our recent demonstration of laser-driven fusion, the secondary radiations generated are neutrons, x-ray emission, and MeV energy electrons and protons—all at a kHz rate. To achieve the high repetition rate, we developed the enabling kHz-repetition-rate-compatible liquid targets in the form of microjets, droplets, and submicron-thick sheets. These targets, combined with high repetition rate diagnostics, enable a unique, real-time feedback loop between the experimental inputs (laser and target parameters) and generated sources (x-rays, electrons, ions, etc.) to develop machine learning (ML)-based control of mixed radiation. The goal of this paper is to provide an overview of the capabilities of ELL, describe the diagnostics and characteristics of the secondary radiation, data analysis, and quasi-real-time ML functionality of this platform that have been developed over the last decade and a half.more » « less
-
Abstract We discuss recent developments and challenges of beam dynamics in Dielectric Laser Acceleration (DLA), for both high and low energy electron beams. Starting from ultra-low emittance nanotip sources the paper follows the beam path of a tentative DLA light source concept. Acceleration in conjuction with focusing is discussed in the framework of Alternating Phase Focusing (APF) and spatial harmonic ponderomotive focusing. The paper concludes with an outlook to the beam dynamics in laser driven nanophotonic undulators, based on tilted DLA grating structures.more » « less
-
Abstract There is great need for high intensity proton beams from compact particle accelerators in particle physics, medical isotope production, and materials- and energy-research. To address this need, we present, for the first time, a design for a compact isochronous cyclotron that will be able to deliver 10 mA of 60 MeV protons—an order of magnitude higher than on-market compact cyclotrons and a factor four higher than research machines. A key breakthrough is that vortex motion is incorporated in the design of a cyclotron, leading to clean extraction. Beam losses on the septa of the electrostatic extraction channels stay below 120 W (40% below the required safety limit), while maintaining good beam quality. We present a set of highly accurate particle-in-cell simulations, and an uncertainty quantification of select beam input parameters using machine learning, showing the robustness of the design. This design can be utilized for beams for experiments in particle and nuclear physics, materials science and medical physics as well as for industrial applications.more » « less
-
The emergence of multi-petawatt laser facilities is expected to push forward the maximum energy gain that can be achieved in a single stage of a laser wakefield acceleration (LWFA) to tens of giga-electron volts, which begs the question—is it likely to impact particle physics by providing a truly compact particle collider? Colliders have very stringent requirements on beam energy, acceleration efficiency, and beam quality. In this article, we propose an LWFA scheme that can for the first time simultaneously achieve hitherto unrealized acceleration efficiency from the laser to the electron beam of >20% and a sub-1% energy spread using a stepwise plasma structure and a nonlinearly chirped laser pulse. Three-dimensional high-fidelity simulations show that the nonlinear chirp can effectively mitigate the laser waveform distortion and lengthen the acceleration distance. This, combined with an interstage rephasing process in the stepwise plasma, can triple the beam energy gain compared to that in a uniform plasma for a fixed laser energy, thereby dramatically increasing the efficiency. A dynamic beam loading effect can almost perfectly cancel the energy chirp that arises during the acceleration, leading to the sub-percent energy spread. This scheme is highly scalable and can be applied to petawatt LWFA scenarios. Scaling laws are obtained, which suggest that electron beams with parameters relevant for a Higgs factory could be reached with the proposed high-efficiency, low-energy-spread scheme.more » « less
An official website of the United States government
