skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 9, 2026

Title: Doppelgangers++: Improved Visual Disambiguation with Geometric 3D Features
Visual aliasing, or doppelgangers, poses severe challenges to 3D reconstruction. We propose Doppelganger++, an enhanced pairwise image classifier that excels in visual disambiguation across diverse and challenging scenes. We seamlessly integrate Doppelganger++ into SfM, successfully disambiguating each scene. (Middle) Compared to prior work (which we refer to as DG-OG), Doppelgangers++ is more robust for everyday scenes, showing improved accuracy and robustness. We show pairs that DG-OG classifies incorrectly and ours gets correct. Our new VisymScenes dataset, featuring complex daily scenes, is particularly challenging for COLMAP and DG-OG, but our method can achieve correct and complete reconstructions.  more » « less
Award ID(s):
2212084
PAR ID:
10601177
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Computer Vision and Pattern Recognition (CVPR)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metropolis Light Transport (MLT) is a global illumination algorithm that is well-known for rendering challenging scenes with intricate light paths. However, MLT methods tend to produce unpredictable correlation artifacts in images, which can introduce visual inconsistencies for animation rendering. This drawback also makes it challenging to denoise MLT renderings while maintaining temporal stability. We tackle this issue with modern learning-based methods and build a sequence denoiser combining the recurrent connections with the cutting-edge vision transformer architecture. We demonstrate that our sophisticated denoiser can consistently improve the quality and temporal stability of MLT renderings with difficult light paths. Our method is efficient and scalable for complex scene renderings that require high sample counts. 
    more » « less
  2. Schyns, Philippe George (Ed.)
    A number of neuroimaging techniques have been employed to understand how visual information is transformed along the visual pathway. Although each technique has spatial and temporal limitations, they can each provide important insights into the visual code. While the BOLD signal of fMRI can be quite informative, the visual code is not static and this can be obscured by fMRI’s poor temporal resolution. In this study, we leveraged the high temporal resolution of EEG to develop an encoding technique based on the distribution of responses generated by a population of real-world scenes. This approach maps neural signals to each pixel within a given image and reveals location-specific transformations of the visual code, providing a spatiotemporal signature for the image at each electrode. Our analyses of the mapping results revealed that scenes undergo a series of nonuniform transformations that prioritize different spatial frequencies at different regions of scenes over time. This mapping technique offers a potential avenue for future studies to explore how dynamic feedforward and recurrent processes inform and refine high-level representations of our visual world. 
    more » « less
  3. Domain generalization (DG) aims to train a model to perform well in unseen domains under different distributions. This paper considers a more realistic yet more challenging scenario, namely Single Domain Generalization (Single-DG), where only a single source domain is available for training. To tackle this challenge, we first try to understand when neural networks fail to generalize? We empirically ascertain a property of a model that correlates strongly with its generalization that we coin as model sensitivity. Based on our analysis, we propose a novel strategy of Spectral Adversarial Data Augmentation (SADA) to generate augmented images targeted at the highly sensitive frequencies. Models trained with these hard-to-learn samples can effectively suppress the sensitivity in the frequency space, which leads to improved generalization performance. Extensive experiments on multiple public datasets demonstrate the superiority of our approach, which surpasses the state-of-the-art single-DG methods by up to 2.55%. The source code is available at https://github.com/DIAL-RPI/Spectral-Adversarial-Data-Augmentation. 
    more » « less
  4. Building embodied intelligent agents that can interact with 3D indoor environments has received increasing research attention in recent years. While most works focus on single-object or agent-object visual functionality and affordances, our work proposes to study a new kind of visual relationship that is also important to perceive and model -- inter-object functional relationships (e.g., a switch on the wall turns on or off the light, a remote control operates the TV). Humans often spend little or no effort to infer these relationships, even when entering a new room, by using our strong prior knowledge (e.g., we know that buttons control electrical devices) or using only a few exploratory interactions in cases of uncertainty (e.g., multiple switches and lights in the same room). In this paper, we take the first step in building AI system learning inter-object functional relationships in 3D indoor environments with key technical contributions of modeling prior knowledge by training over large-scale scenes and designing interactive policies for effectively exploring the training scenes and quickly adapting to novel test scenes. We create a new benchmark based on the AI2Thor and PartNet datasets and perform extensive experiments that prove the effectiveness of our proposed method. Results show that our model successfully learns priors and fast-interactive-adaptation strategies for exploring inter-object functional relationships in complex 3D scenes. Several ablation studies further validate the usefulness of each proposed module. 
    more » « less
  5. null (Ed.)
    Humans can incrementally learn to do new visual detection tasks, which is a huge challenge for today's computer vision systems. Incrementally trained deep learning models lack backwards transfer to previously seen classes and suffer from a phenomenon known as "catastrophic forgetting." In this paper, we pioneer online streaming learning for object detection, where an agent must learn examples one at a time with severe memory and computational constraints. In object detection, a system must output all bounding boxes for an image with the correct label. Unlike earlier work, the system described in this paper can learn this task in an online manner with new classes being introduced over time. We achieve this capability by using a novel memory replay mechanism that efficiently replays entire scenes. We achieve state-of-the-art results on both the PASCAL VOC 2007 and MS COCO datasets. 
    more » « less